/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:06:55 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cf_8 -include rdft/scalar/hc2cf.h */ /* * This function contains 66 FP additions, 36 FP multiplications, * (or, 44 additions, 14 multiplications, 22 fused multiply/add), * 34 stack variables, 1 constants, and 32 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cf_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { E T1, T1m, T7, T1l, Tk, TS, Te, TQ, TF, T14, TL, T16, T12, T17, Ts; E TX, Ty, TZ, TV, T10; T1 = Rp[0]; T1m = Rm[0]; { E T3, T6, T4, T1k, T2, T5; T3 = Rp[WS(rs, 2)]; T6 = Rm[WS(rs, 2)]; T2 = W[6]; T4 = T2 * T3; T1k = T2 * T6; T5 = W[7]; T7 = FMA(T5, T6, T4); T1l = FNMS(T5, T3, T1k); } { E Tg, Tj, Th, TR, Tf, Ti; Tg = Rp[WS(rs, 3)]; Tj = Rm[WS(rs, 3)]; Tf = W[10]; Th = Tf * Tg; TR = Tf * Tj; Ti = W[11]; Tk = FMA(Ti, Tj, Th); TS = FNMS(Ti, Tg, TR); } { E Ta, Td, Tb, TP, T9, Tc; Ta = Rp[WS(rs, 1)]; Td = Rm[WS(rs, 1)]; T9 = W[2]; Tb = T9 * Ta; TP = T9 * Td; Tc = W[3]; Te = FMA(Tc, Td, Tb); TQ = FNMS(Tc, Ta, TP); } { E TB, TE, TC, T13, TH, TK, TI, T15, TA, TG, TD, TJ; TB = Ip[WS(rs, 3)]; TE = Im[WS(rs, 3)]; TA = W[12]; TC = TA * TB; T13 = TA * TE; TH = Ip[WS(rs, 1)]; TK = Im[WS(rs, 1)]; TG = W[4]; TI = TG * TH; T15 = TG * TK; TD = W[13]; TF = FMA(TD, TE, TC); T14 = FNMS(TD, TB, T13); TJ = W[5]; TL = FMA(TJ, TK, TI); T16 = FNMS(TJ, TH, T15); T12 = TF - TL; T17 = T14 - T16; } { E To, Tr, Tp, TW, Tu, Tx, Tv, TY, Tn, Tt, Tq, Tw; To = Ip[0]; Tr = Im[0]; Tn = W[0]; Tp = Tn * To; TW = Tn * Tr; Tu = Ip[WS(rs, 2)]; Tx = Im[WS(rs, 2)]; Tt = W[8]; Tv = Tt * Tu; TY = Tt * Tx; Tq = W[1]; Ts = FMA(Tq, Tr, Tp); TX = FNMS(Tq, To, TW); Tw = W[9]; Ty = FMA(Tw, Tx, Tv); TZ = FNMS(Tw, Tu, TY); TV = Ts - Ty; T10 = TX - TZ; } { E TU, T1a, T1t, T1v, T19, T1w, T1d, T1u; { E TO, TT, T1r, T1s; TO = T1 - T7; TT = TQ - TS; TU = TO + TT; T1a = TO - TT; T1r = T1m - T1l; T1s = Te - Tk; T1t = T1r - T1s; T1v = T1s + T1r; } { E T11, T18, T1b, T1c; T11 = TV + T10; T18 = T12 - T17; T19 = T11 + T18; T1w = T18 - T11; T1b = T10 - TV; T1c = T12 + T17; T1d = T1b - T1c; T1u = T1b + T1c; } Rm[WS(rs, 2)] = FNMS(KP707106781, T19, TU); Im[WS(rs, 2)] = FMS(KP707106781, T1u, T1t); Rp[WS(rs, 1)] = FMA(KP707106781, T19, TU); Ip[WS(rs, 1)] = FMA(KP707106781, T1u, T1t); Rm[0] = FNMS(KP707106781, T1d, T1a); Im[0] = FMS(KP707106781, T1w, T1v); Rp[WS(rs, 3)] = FMA(KP707106781, T1d, T1a); Ip[WS(rs, 3)] = FMA(KP707106781, T1w, T1v); } { E Tm, T1e, T1o, T1q, TN, T1p, T1h, T1i; { E T8, Tl, T1j, T1n; T8 = T1 + T7; Tl = Te + Tk; Tm = T8 + Tl; T1e = T8 - Tl; T1j = TQ + TS; T1n = T1l + T1m; T1o = T1j + T1n; T1q = T1n - T1j; } { E Tz, TM, T1f, T1g; Tz = Ts + Ty; TM = TF + TL; TN = Tz + TM; T1p = TM - Tz; T1f = TX + TZ; T1g = T14 + T16; T1h = T1f - T1g; T1i = T1f + T1g; } Rm[WS(rs, 3)] = Tm - TN; Im[WS(rs, 3)] = T1i - T1o; Rp[0] = Tm + TN; Ip[0] = T1i + T1o; Rm[WS(rs, 1)] = T1e - T1h; Im[WS(rs, 1)] = T1p - T1q; Rp[WS(rs, 2)] = T1e + T1h; Ip[WS(rs, 2)] = T1p + T1q; } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 8}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 8, "hc2cf_8", twinstr, &GENUS, {44, 14, 22, 0} }; void X(codelet_hc2cf_8) (planner *p) { X(khc2c_register) (p, hc2cf_8, &desc, HC2C_VIA_RDFT); } #else /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cf_8 -include rdft/scalar/hc2cf.h */ /* * This function contains 66 FP additions, 32 FP multiplications, * (or, 52 additions, 18 multiplications, 14 fused multiply/add), * 28 stack variables, 1 constants, and 32 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cf_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { E T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM; E TP; { E T1, T18, T6, T17; T1 = Rp[0]; T18 = Rm[0]; { E T3, T5, T2, T4; T3 = Rp[WS(rs, 2)]; T5 = Rm[WS(rs, 2)]; T2 = W[6]; T4 = W[7]; T6 = FMA(T2, T3, T4 * T5); T17 = FNMS(T4, T3, T2 * T5); } T7 = T1 + T6; T1e = T18 - T17; TH = T1 - T6; T19 = T17 + T18; } { E Tz, TS, TE, TT; { E Tw, Ty, Tv, Tx; Tw = Ip[WS(rs, 3)]; Ty = Im[WS(rs, 3)]; Tv = W[12]; Tx = W[13]; Tz = FMA(Tv, Tw, Tx * Ty); TS = FNMS(Tx, Tw, Tv * Ty); } { E TB, TD, TA, TC; TB = Ip[WS(rs, 1)]; TD = Im[WS(rs, 1)]; TA = W[4]; TC = W[5]; TE = FMA(TA, TB, TC * TD); TT = FNMS(TC, TB, TA * TD); } TF = Tz + TE; T13 = TS + TT; TR = Tz - TE; TU = TS - TT; } { E Tc, TI, Th, TJ; { E T9, Tb, T8, Ta; T9 = Rp[WS(rs, 1)]; Tb = Rm[WS(rs, 1)]; T8 = W[2]; Ta = W[3]; Tc = FMA(T8, T9, Ta * Tb); TI = FNMS(Ta, T9, T8 * Tb); } { E Te, Tg, Td, Tf; Te = Rp[WS(rs, 3)]; Tg = Rm[WS(rs, 3)]; Td = W[10]; Tf = W[11]; Th = FMA(Td, Te, Tf * Tg); TJ = FNMS(Tf, Te, Td * Tg); } Ti = Tc + Th; T1f = Tc - Th; TK = TI - TJ; T16 = TI + TJ; } { E To, TN, Tt, TO; { E Tl, Tn, Tk, Tm; Tl = Ip[0]; Tn = Im[0]; Tk = W[0]; Tm = W[1]; To = FMA(Tk, Tl, Tm * Tn); TN = FNMS(Tm, Tl, Tk * Tn); } { E Tq, Ts, Tp, Tr; Tq = Ip[WS(rs, 2)]; Ts = Im[WS(rs, 2)]; Tp = W[8]; Tr = W[9]; Tt = FMA(Tp, Tq, Tr * Ts); TO = FNMS(Tr, Tq, Tp * Ts); } Tu = To + Tt; T12 = TN + TO; TM = To - Tt; TP = TN - TO; } { E Tj, TG, T1b, T1c; Tj = T7 + Ti; TG = Tu + TF; Rm[WS(rs, 3)] = Tj - TG; Rp[0] = Tj + TG; { E T15, T1a, T11, T14; T15 = T12 + T13; T1a = T16 + T19; Im[WS(rs, 3)] = T15 - T1a; Ip[0] = T15 + T1a; T11 = T7 - Ti; T14 = T12 - T13; Rm[WS(rs, 1)] = T11 - T14; Rp[WS(rs, 2)] = T11 + T14; } T1b = TF - Tu; T1c = T19 - T16; Im[WS(rs, 1)] = T1b - T1c; Ip[WS(rs, 2)] = T1b + T1c; { E TX, T1g, T10, T1d, TY, TZ; TX = TH - TK; T1g = T1e - T1f; TY = TP - TM; TZ = TR + TU; T10 = KP707106781 * (TY - TZ); T1d = KP707106781 * (TY + TZ); Rm[0] = TX - T10; Ip[WS(rs, 1)] = T1d + T1g; Rp[WS(rs, 3)] = TX + T10; Im[WS(rs, 2)] = T1d - T1g; } { E TL, T1i, TW, T1h, TQ, TV; TL = TH + TK; T1i = T1f + T1e; TQ = TM + TP; TV = TR - TU; TW = KP707106781 * (TQ + TV); T1h = KP707106781 * (TV - TQ); Rm[WS(rs, 2)] = TL - TW; Ip[WS(rs, 3)] = T1h + T1i; Rp[WS(rs, 1)] = TL + TW; Im[0] = T1h - T1i; } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 8}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 8, "hc2cf_8", twinstr, &GENUS, {52, 18, 14, 0} }; void X(codelet_hc2cf_8) (planner *p) { X(khc2c_register) (p, hc2cf_8, &desc, HC2C_VIA_RDFT); } #endif