/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:16 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include rdft/scalar/hc2cf.h */ /* * This function contains 228 FP additions, 166 FP multiplications, * (or, 136 additions, 74 multiplications, 92 fused multiply/add), * 91 stack variables, 4 constants, and 64 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { E T1, T2, Tw, Ty, Th, Tj, T4, T5, TY, T6, Tk, T1o, T1d, Tz, T1j; E Tq, TF, T18, TR, TL, T13, T1A, T1K, T1E, T1H, Tc, T25, T2k, T29, T2h; { E Tx, TE, Ti, TK, Tp, TQ, Tb, T3; T1 = W[0]; T2 = W[2]; T3 = T1 * T2; Tw = W[6]; Tx = T1 * Tw; Ty = W[7]; TE = T1 * Ty; Th = W[4]; Ti = T1 * Th; TK = T2 * Th; Tj = W[5]; Tp = T1 * Tj; TQ = T2 * Tj; T4 = W[1]; T5 = W[3]; Tb = T1 * T5; TY = FNMS(T4, T5, T3); T6 = FMA(T4, T5, T3); Tk = FNMS(T4, Tj, Ti); T1o = FNMS(T4, Th, Tp); T1d = FMA(T5, Th, TQ); Tz = FMA(T4, Ty, Tx); T1j = FMA(T4, Tj, Ti); Tq = FMA(T4, Th, Tp); TF = FNMS(T4, Tw, TE); T18 = FNMS(T5, Tj, TK); TR = FNMS(T5, Th, TQ); TL = FMA(T5, Tj, TK); { E T1z, T1D, T24, T28; T1z = TY * Th; T1D = TY * Tj; T13 = FMA(T4, T2, Tb); T1A = FMA(T13, Tj, T1z); T1K = FMA(T13, Th, T1D); T1E = FNMS(T13, Th, T1D); T1H = FNMS(T13, Tj, T1z); T24 = T6 * Th; T28 = T6 * Tj; Tc = FNMS(T4, T2, Tb); T25 = FNMS(Tc, Tj, T24); T2k = FNMS(Tc, Th, T28); T29 = FMA(Tc, Th, T28); T2h = FMA(Tc, Tj, T24); } } { E T1v, T2q, T1s, T2s, T38, T3T, T1Y, T3P, T17, T1h, T2x, T2v, T33, T3Q, T1N; E T3S, Tg, Tu, T3A, T2B, T2D, T3B, T2c, T3L, T2S, T3I, TJ, TV, T3E, T2G; E T2I, T3D, T2n, T3J, T2X, T3M; { E T1t, T1u, T1W, T1m, T1Q, T1S, T1T, T1V, T36, T1r, T34, T1P, T1k, T1l, T1n; E T2r; T1t = Ip[0]; T1u = Im[0]; T1W = T1t + T1u; T1k = Ip[WS(rs, 4)]; T1l = Im[WS(rs, 4)]; T1m = T1k - T1l; T1Q = T1k + T1l; { E T1U, T1p, T1q, T1O; T1S = Rm[0]; T1T = Rp[0]; T1U = T1S - T1T; T1V = T1 * T1U; T36 = T4 * T1U; T1p = Rp[WS(rs, 4)]; T1q = Rm[WS(rs, 4)]; T1O = T1q - T1p; T1r = T1p + T1q; T34 = Tj * T1O; T1P = Th * T1O; } T1v = T1t - T1u; T2q = T1T + T1S; T1n = T1j * T1m; T1s = FNMS(T1o, T1r, T1n); T2r = T1j * T1r; T2s = FMA(T1o, T1m, T2r); { E T35, T37, T1R, T1X; T35 = FMA(Th, T1Q, T34); T37 = FMA(T1, T1W, T36); T38 = T35 + T37; T3T = T37 - T35; T1R = FNMS(Tj, T1Q, T1P); T1X = FNMS(T4, T1W, T1V); T1Y = T1R + T1X; T3P = T1X - T1R; } } { E T11, T1F, T16, T2Z, T1C, T1b, T1L, T1g, T31, T1J; { E TZ, T10, T14, T15, T1B; TZ = Ip[WS(rs, 2)]; T10 = Im[WS(rs, 2)]; T11 = TZ - T10; T1F = TZ + T10; T14 = Rp[WS(rs, 2)]; T15 = Rm[WS(rs, 2)]; T1B = T15 - T14; T16 = T14 + T15; T2Z = T1E * T1B; T1C = T1A * T1B; } { E T19, T1a, T1e, T1f, T1I; T19 = Ip[WS(rs, 6)]; T1a = Im[WS(rs, 6)]; T1b = T19 - T1a; T1L = T19 + T1a; T1e = Rp[WS(rs, 6)]; T1f = Rm[WS(rs, 6)]; T1I = T1f - T1e; T1g = T1e + T1f; T31 = T1K * T1I; T1J = T1H * T1I; } { E T12, T1c, T2w, T2u; T12 = TY * T11; T17 = FNMS(T13, T16, T12); T1c = T18 * T1b; T1h = FNMS(T1d, T1g, T1c); T2w = T18 * T1g; T2x = FMA(T1d, T1b, T2w); T2u = TY * T16; T2v = FMA(T13, T11, T2u); { E T30, T32, T1G, T1M; T30 = FMA(T1A, T1F, T2Z); T32 = FMA(T1H, T1L, T31); T33 = T30 + T32; T3Q = T30 - T32; T1G = FNMS(T1E, T1F, T1C); T1M = FNMS(T1K, T1L, T1J); T1N = T1G + T1M; T3S = T1G - T1M; } } } { E T9, T22, Ta, T2O, Tf, T20, T21, T2A, Tn, T2a, To, T2Q, Tt, T26, T27; E T2C; { E T7, T8, Td, Te; T7 = Ip[WS(rs, 1)]; T8 = Im[WS(rs, 1)]; T9 = T7 - T8; T22 = T7 + T8; Ta = T6 * T9; T2O = T2 * T22; Td = Rp[WS(rs, 1)]; Te = Rm[WS(rs, 1)]; Tf = Td + Te; T20 = Td - Te; T21 = T2 * T20; T2A = T6 * Tf; } { E Tl, Tm, Tr, Ts; Tl = Ip[WS(rs, 5)]; Tm = Im[WS(rs, 5)]; Tn = Tl - Tm; T2a = Tl + Tm; To = Tk * Tn; T2Q = T25 * T2a; Tr = Rp[WS(rs, 5)]; Ts = Rm[WS(rs, 5)]; Tt = Tr + Ts; T26 = Tr - Ts; T27 = T25 * T26; T2C = Tk * Tt; } Tg = FNMS(Tc, Tf, Ta); Tu = FNMS(Tq, Tt, To); T3A = Tg - Tu; T2B = FMA(Tc, T9, T2A); T2D = FMA(Tq, Tn, T2C); T3B = T2B - T2D; { E T23, T2b, T2P, T2R; T23 = FMA(T5, T22, T21); T2b = FMA(T29, T2a, T27); T2c = T23 + T2b; T3L = T2b - T23; T2P = FNMS(T5, T20, T2O); T2R = FNMS(T29, T26, T2Q); T2S = T2P + T2R; T3I = T2R - T2P; } } { E TC, T2f, TD, T2T, TI, T2d, T2e, T2F, TO, T2l, TP, T2V, TU, T2i, T2j; E T2H; { E TA, TB, TG, TH; TA = Ip[WS(rs, 7)]; TB = Im[WS(rs, 7)]; TC = TA - TB; T2f = TA + TB; TD = Tz * TC; T2T = Tw * T2f; TG = Rp[WS(rs, 7)]; TH = Rm[WS(rs, 7)]; TI = TG + TH; T2d = TG - TH; T2e = Tw * T2d; T2F = Tz * TI; } { E TM, TN, TS, TT; TM = Ip[WS(rs, 3)]; TN = Im[WS(rs, 3)]; TO = TM - TN; T2l = TM + TN; TP = TL * TO; T2V = T2h * T2l; TS = Rp[WS(rs, 3)]; TT = Rm[WS(rs, 3)]; TU = TS + TT; T2i = TS - TT; T2j = T2h * T2i; T2H = TL * TU; } TJ = FNMS(TF, TI, TD); TV = FNMS(TR, TU, TP); T3E = TJ - TV; T2G = FMA(TF, TC, T2F); T2I = FMA(TR, TO, T2H); T3D = T2G - T2I; { E T2g, T2m, T2U, T2W; T2g = FMA(Ty, T2f, T2e); T2m = FMA(T2k, T2l, T2j); T2n = T2g + T2m; T3J = T2m - T2g; T2U = FNMS(Ty, T2d, T2T); T2W = FNMS(T2k, T2i, T2V); T2X = T2U + T2W; T3M = T2U - T2W; } } { E TX, T3o, T3i, T3s, T3l, T3t, T1x, T3e, T2p, T2M, T2K, T3d, T3a, T3c, T2z; E T3n; { E Tv, TW, T3g, T3h; Tv = Tg + Tu; TW = TJ + TV; TX = Tv + TW; T3o = Tv - TW; T3g = T2X - T2S; T3h = T2c - T2n; T3i = T3g + T3h; T3s = T3g - T3h; } { E T3j, T3k, T1i, T1w; T3j = T1Y - T1N; T3k = T38 - T33; T3l = T3j - T3k; T3t = T3j + T3k; T1i = T17 + T1h; T1w = T1s + T1v; T1x = T1i + T1w; T3e = T1w - T1i; } { E T1Z, T2o, T2E, T2J; T1Z = T1N + T1Y; T2o = T2c + T2n; T2p = T1Z - T2o; T2M = T2o + T1Z; T2E = T2B + T2D; T2J = T2G + T2I; T2K = T2E + T2J; T3d = T2J - T2E; } { E T2Y, T39, T2t, T2y; T2Y = T2S + T2X; T39 = T33 + T38; T3a = T2Y - T39; T3c = T2Y + T39; T2t = T2q + T2s; T2y = T2v + T2x; T2z = T2t + T2y; T3n = T2t - T2y; } { E T1y, T3b, T2L, T2N; T1y = TX + T1x; Ip[0] = KP500000000 * (T1y + T2p); Im[WS(rs, 7)] = KP500000000 * (T2p - T1y); T3b = T2z + T2K; Rm[WS(rs, 7)] = KP500000000 * (T3b - T3c); Rp[0] = KP500000000 * (T3b + T3c); T2L = T2z - T2K; Rm[WS(rs, 3)] = KP500000000 * (T2L - T2M); Rp[WS(rs, 4)] = KP500000000 * (T2L + T2M); T2N = T1x - TX; Ip[WS(rs, 4)] = KP500000000 * (T2N + T3a); Im[WS(rs, 3)] = KP500000000 * (T3a - T2N); } { E T3f, T3m, T3v, T3w; T3f = T3d + T3e; T3m = T3i + T3l; Ip[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3m, T3f)); Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP707106781, T3m, T3f))); T3v = T3n + T3o; T3w = T3s + T3t; Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP707106781, T3w, T3v)); Rp[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3w, T3v)); } { E T3p, T3q, T3r, T3u; T3p = T3n - T3o; T3q = T3l - T3i; Rm[WS(rs, 1)] = KP500000000 * (FNMS(KP707106781, T3q, T3p)); Rp[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3q, T3p)); T3r = T3e - T3d; T3u = T3s - T3t; Ip[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3u, T3r)); Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP707106781, T3u, T3r))); } } { E T3z, T4b, T4g, T4q, T4j, T4r, T3G, T4m, T3O, T46, T3Z, T4l, T42, T4c, T3V; E T47; { E T3x, T3y, T4e, T4f; T3x = T1v - T1s; T3y = T2v - T2x; T3z = T3x - T3y; T4b = T3y + T3x; T4e = T3I - T3J; T4f = T3M - T3L; T4g = FMA(KP414213562, T4f, T4e); T4q = FNMS(KP414213562, T4e, T4f); } { E T4h, T4i, T3C, T3F; T4h = T3Q + T3P; T4i = T3T - T3S; T4j = FMA(KP414213562, T4i, T4h); T4r = FNMS(KP414213562, T4h, T4i); T3C = T3A - T3B; T3F = T3D + T3E; T3G = T3C + T3F; T4m = T3C - T3F; } { E T3K, T3N, T3X, T3Y; T3K = T3I + T3J; T3N = T3L + T3M; T3O = FMA(KP414213562, T3N, T3K); T46 = FNMS(KP414213562, T3K, T3N); T3X = T2q - T2s; T3Y = T17 - T1h; T3Z = T3X + T3Y; T4l = T3X - T3Y; } { E T40, T41, T3R, T3U; T40 = T3B + T3A; T41 = T3D - T3E; T42 = T40 + T41; T4c = T41 - T40; T3R = T3P - T3Q; T3U = T3S + T3T; T3V = FNMS(KP414213562, T3U, T3R); T47 = FMA(KP414213562, T3R, T3U); } { E T3H, T3W, T49, T4a; T3H = FMA(KP707106781, T3G, T3z); T3W = T3O + T3V; Ip[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3W, T3H)); Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP923879532, T3W, T3H))); T49 = FMA(KP707106781, T42, T3Z); T4a = T46 + T47; Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP923879532, T4a, T49)); Rp[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T4a, T49)); } { E T43, T44, T45, T48; T43 = FNMS(KP707106781, T42, T3Z); T44 = T3V - T3O; Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP923879532, T44, T43)); Rp[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T44, T43)); T45 = FNMS(KP707106781, T3G, T3z); T48 = T46 - T47; Ip[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T48, T45)); Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP923879532, T48, T45))); } { E T4d, T4k, T4t, T4u; T4d = FNMS(KP707106781, T4c, T4b); T4k = T4g - T4j; Ip[WS(rs, 7)] = KP500000000 * (FMA(KP923879532, T4k, T4d)); Im[0] = -(KP500000000 * (FNMS(KP923879532, T4k, T4d))); T4t = FNMS(KP707106781, T4m, T4l); T4u = T4q + T4r; Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP923879532, T4u, T4t)); Rm[0] = KP500000000 * (FMA(KP923879532, T4u, T4t)); } { E T4n, T4o, T4p, T4s; T4n = FMA(KP707106781, T4m, T4l); T4o = T4g + T4j; Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP923879532, T4o, T4n)); Rp[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4o, T4n)); T4p = FMA(KP707106781, T4c, T4b); T4s = T4q - T4r; Ip[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4s, T4p)); Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP923879532, T4s, T4p))); } } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 9}, {TW_CEXP, 1, 15}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, {136, 74, 92, 0} }; void X(codelet_hc2cfdft2_16) (planner *p) { X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include rdft/scalar/hc2cf.h */ /* * This function contains 228 FP additions, 124 FP multiplications, * (or, 188 additions, 84 multiplications, 40 fused multiply/add), * 91 stack variables, 4 constants, and 64 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP461939766, +0.461939766255643378064091594698394143411208313); DK(KP191341716, +0.191341716182544885864229992015199433380672281); DK(KP353553390, +0.353553390593273762200422181052424519642417969); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { E T1, T4, T2, T5, T7, Td, T12, TY, Tk, Ti, Tm, T1l, T1b, TL, T1h; E Ts, TR, T17, Ty, Tz, TA, TE, T1L, T1Q, T1H, T1O, T24, T2d, T20, T2b; { E Tl, TP, Tq, TK, Tj, TQ, Tr, TJ; { E T3, Tc, T6, Tb; T1 = W[0]; T4 = W[1]; T2 = W[2]; T5 = W[3]; T3 = T1 * T2; Tc = T4 * T2; T6 = T4 * T5; Tb = T1 * T5; T7 = T3 + T6; Td = Tb - Tc; T12 = Tb + Tc; TY = T3 - T6; Tk = W[5]; Tl = T4 * Tk; TP = T2 * Tk; Tq = T1 * Tk; TK = T5 * Tk; Ti = W[4]; Tj = T1 * Ti; TQ = T5 * Ti; Tr = T4 * Ti; TJ = T2 * Ti; } Tm = Tj - Tl; T1l = Tq - Tr; T1b = TP + TQ; TL = TJ + TK; T1h = Tj + Tl; Ts = Tq + Tr; TR = TP - TQ; T17 = TJ - TK; Ty = W[6]; Tz = W[7]; TA = FMA(T1, Ty, T4 * Tz); TE = FNMS(T4, Ty, T1 * Tz); { E T1J, T1K, T1F, T1G; T1J = TY * Tk; T1K = T12 * Ti; T1L = T1J - T1K; T1Q = T1J + T1K; T1F = TY * Ti; T1G = T12 * Tk; T1H = T1F + T1G; T1O = T1F - T1G; } { E T22, T23, T1Y, T1Z; T22 = T7 * Tk; T23 = Td * Ti; T24 = T22 + T23; T2d = T22 - T23; T1Y = T7 * Ti; T1Z = Td * Tk; T20 = T1Y - T1Z; T2b = T1Y + T1Z; } } { E T1t, T3i, T2l, T3B, T1E, T3t, T2M, T3x, T1g, T3C, T2J, T3u, T1T, T3w, T2o; E T3j, Tx, T3b, T2C, T3q, T27, T3m, T2s, T3c, TW, T3f, T2F, T3n, T2g, T3p; E T2v, T3e; { E T1k, T1C, T1o, T1B, T1s, T1z, T1y, T2j, T1p, T2k; { E T1i, T1j, T1m, T1n; T1i = Ip[WS(rs, 4)]; T1j = Im[WS(rs, 4)]; T1k = T1i - T1j; T1C = T1i + T1j; T1m = Rp[WS(rs, 4)]; T1n = Rm[WS(rs, 4)]; T1o = T1m + T1n; T1B = T1m - T1n; } { E T1q, T1r, T1w, T1x; T1q = Ip[0]; T1r = Im[0]; T1s = T1q - T1r; T1z = T1q + T1r; T1w = Rm[0]; T1x = Rp[0]; T1y = T1w - T1x; T2j = T1x + T1w; } T1p = FNMS(T1l, T1o, T1h * T1k); T1t = T1p + T1s; T3i = T1s - T1p; T2k = FMA(T1h, T1o, T1l * T1k); T2l = T2j + T2k; T3B = T2j - T2k; { E T1A, T1D, T2K, T2L; T1A = FNMS(T4, T1z, T1 * T1y); T1D = FMA(Ti, T1B, Tk * T1C); T1E = T1A - T1D; T3t = T1D + T1A; T2K = FNMS(Tk, T1B, Ti * T1C); T2L = FMA(T4, T1y, T1 * T1z); T2M = T2K + T2L; T3x = T2L - T2K; } } { E T11, T1M, T15, T1I, T1a, T1R, T1e, T1P; { E TZ, T10, T13, T14; TZ = Ip[WS(rs, 2)]; T10 = Im[WS(rs, 2)]; T11 = TZ - T10; T1M = TZ + T10; T13 = Rp[WS(rs, 2)]; T14 = Rm[WS(rs, 2)]; T15 = T13 + T14; T1I = T13 - T14; } { E T18, T19, T1c, T1d; T18 = Ip[WS(rs, 6)]; T19 = Im[WS(rs, 6)]; T1a = T18 - T19; T1R = T18 + T19; T1c = Rp[WS(rs, 6)]; T1d = Rm[WS(rs, 6)]; T1e = T1c + T1d; T1P = T1c - T1d; } { E T16, T1f, T2H, T2I; T16 = FNMS(T12, T15, TY * T11); T1f = FNMS(T1b, T1e, T17 * T1a); T1g = T16 + T1f; T3C = T16 - T1f; T2H = FNMS(T1L, T1I, T1H * T1M); T2I = FNMS(T1Q, T1P, T1O * T1R); T2J = T2H + T2I; T3u = T2H - T2I; } { E T1N, T1S, T2m, T2n; T1N = FMA(T1H, T1I, T1L * T1M); T1S = FMA(T1O, T1P, T1Q * T1R); T1T = T1N + T1S; T3w = T1S - T1N; T2m = FMA(TY, T15, T12 * T11); T2n = FMA(T17, T1e, T1b * T1a); T2o = T2m + T2n; T3j = T2m - T2n; } } { E Ta, T1W, Tg, T1V, Tp, T25, Tv, T21; { E T8, T9, Te, Tf; T8 = Ip[WS(rs, 1)]; T9 = Im[WS(rs, 1)]; Ta = T8 - T9; T1W = T8 + T9; Te = Rp[WS(rs, 1)]; Tf = Rm[WS(rs, 1)]; Tg = Te + Tf; T1V = Te - Tf; } { E Tn, To, Tt, Tu; Tn = Ip[WS(rs, 5)]; To = Im[WS(rs, 5)]; Tp = Tn - To; T25 = Tn + To; Tt = Rp[WS(rs, 5)]; Tu = Rm[WS(rs, 5)]; Tv = Tt + Tu; T21 = Tt - Tu; } { E Th, Tw, T2A, T2B; Th = FNMS(Td, Tg, T7 * Ta); Tw = FNMS(Ts, Tv, Tm * Tp); Tx = Th + Tw; T3b = Th - Tw; T2A = FNMS(T5, T1V, T2 * T1W); T2B = FNMS(T24, T21, T20 * T25); T2C = T2A + T2B; T3q = T2A - T2B; } { E T1X, T26, T2q, T2r; T1X = FMA(T2, T1V, T5 * T1W); T26 = FMA(T20, T21, T24 * T25); T27 = T1X + T26; T3m = T26 - T1X; T2q = FMA(T7, Tg, Td * Ta); T2r = FMA(Tm, Tv, Ts * Tp); T2s = T2q + T2r; T3c = T2q - T2r; } } { E TD, T29, TH, T28, TO, T2e, TU, T2c; { E TB, TC, TF, TG; TB = Ip[WS(rs, 7)]; TC = Im[WS(rs, 7)]; TD = TB - TC; T29 = TB + TC; TF = Rp[WS(rs, 7)]; TG = Rm[WS(rs, 7)]; TH = TF + TG; T28 = TF - TG; } { E TM, TN, TS, TT; TM = Ip[WS(rs, 3)]; TN = Im[WS(rs, 3)]; TO = TM - TN; T2e = TM + TN; TS = Rp[WS(rs, 3)]; TT = Rm[WS(rs, 3)]; TU = TS + TT; T2c = TS - TT; } { E TI, TV, T2D, T2E; TI = FNMS(TE, TH, TA * TD); TV = FNMS(TR, TU, TL * TO); TW = TI + TV; T3f = TI - TV; T2D = FNMS(Tz, T28, Ty * T29); T2E = FNMS(T2d, T2c, T2b * T2e); T2F = T2D + T2E; T3n = T2D - T2E; } { E T2a, T2f, T2t, T2u; T2a = FMA(Ty, T28, Tz * T29); T2f = FMA(T2b, T2c, T2d * T2e); T2g = T2a + T2f; T3p = T2f - T2a; T2t = FMA(TA, TH, TE * TD); T2u = FMA(TL, TU, TR * TO); T2v = T2t + T2u; T3e = T2t - T2u; } } { E T1v, T2z, T2O, T2Q, T2i, T2y, T2x, T2P; { E TX, T1u, T2G, T2N; TX = Tx + TW; T1u = T1g + T1t; T1v = TX + T1u; T2z = T1u - TX; T2G = T2C + T2F; T2N = T2J + T2M; T2O = T2G - T2N; T2Q = T2G + T2N; } { E T1U, T2h, T2p, T2w; T1U = T1E - T1T; T2h = T27 + T2g; T2i = T1U - T2h; T2y = T2h + T1U; T2p = T2l + T2o; T2w = T2s + T2v; T2x = T2p - T2w; T2P = T2p + T2w; } Ip[0] = KP500000000 * (T1v + T2i); Rp[0] = KP500000000 * (T2P + T2Q); Im[WS(rs, 7)] = KP500000000 * (T2i - T1v); Rm[WS(rs, 7)] = KP500000000 * (T2P - T2Q); Rm[WS(rs, 3)] = KP500000000 * (T2x - T2y); Im[WS(rs, 3)] = KP500000000 * (T2O - T2z); Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y); Ip[WS(rs, 4)] = KP500000000 * (T2z + T2O); } { E T2T, T35, T33, T39, T2W, T36, T2Z, T37; { E T2R, T2S, T31, T32; T2R = T2v - T2s; T2S = T1t - T1g; T2T = KP500000000 * (T2R + T2S); T35 = KP500000000 * (T2S - T2R); T31 = T2l - T2o; T32 = Tx - TW; T33 = KP500000000 * (T31 - T32); T39 = KP500000000 * (T31 + T32); } { E T2U, T2V, T2X, T2Y; T2U = T2F - T2C; T2V = T27 - T2g; T2W = T2U + T2V; T36 = T2U - T2V; T2X = T1T + T1E; T2Y = T2M - T2J; T2Z = T2X - T2Y; T37 = T2X + T2Y; } { E T30, T3a, T34, T38; T30 = KP353553390 * (T2W + T2Z); Ip[WS(rs, 2)] = T2T + T30; Im[WS(rs, 5)] = T30 - T2T; T3a = KP353553390 * (T36 + T37); Rm[WS(rs, 5)] = T39 - T3a; Rp[WS(rs, 2)] = T39 + T3a; T34 = KP353553390 * (T2Z - T2W); Rm[WS(rs, 1)] = T33 - T34; Rp[WS(rs, 6)] = T33 + T34; T38 = KP353553390 * (T36 - T37); Ip[WS(rs, 6)] = T35 + T38; Im[WS(rs, 1)] = T38 - T35; } } { E T3k, T3Q, T3Z, T3D, T3h, T40, T3X, T45, T3G, T3P, T3s, T3K, T3U, T44, T3z; E T3L; { E T3d, T3g, T3o, T3r; T3k = KP500000000 * (T3i - T3j); T3Q = KP500000000 * (T3j + T3i); T3Z = KP500000000 * (T3B - T3C); T3D = KP500000000 * (T3B + T3C); T3d = T3b - T3c; T3g = T3e + T3f; T3h = KP353553390 * (T3d + T3g); T40 = KP353553390 * (T3d - T3g); { E T3V, T3W, T3E, T3F; T3V = T3u + T3t; T3W = T3x - T3w; T3X = FNMS(KP461939766, T3W, KP191341716 * T3V); T45 = FMA(KP461939766, T3V, KP191341716 * T3W); T3E = T3c + T3b; T3F = T3e - T3f; T3G = KP353553390 * (T3E + T3F); T3P = KP353553390 * (T3F - T3E); } T3o = T3m + T3n; T3r = T3p - T3q; T3s = FMA(KP191341716, T3o, KP461939766 * T3r); T3K = FNMS(KP191341716, T3r, KP461939766 * T3o); { E T3S, T3T, T3v, T3y; T3S = T3n - T3m; T3T = T3q + T3p; T3U = FMA(KP461939766, T3S, KP191341716 * T3T); T44 = FNMS(KP461939766, T3T, KP191341716 * T3S); T3v = T3t - T3u; T3y = T3w + T3x; T3z = FNMS(KP191341716, T3y, KP461939766 * T3v); T3L = FMA(KP191341716, T3v, KP461939766 * T3y); } } { E T3l, T3A, T3N, T3O; T3l = T3h + T3k; T3A = T3s + T3z; Ip[WS(rs, 1)] = T3l + T3A; Im[WS(rs, 6)] = T3A - T3l; T3N = T3D + T3G; T3O = T3K + T3L; Rm[WS(rs, 6)] = T3N - T3O; Rp[WS(rs, 1)] = T3N + T3O; } { E T3H, T3I, T3J, T3M; T3H = T3D - T3G; T3I = T3z - T3s; Rm[WS(rs, 2)] = T3H - T3I; Rp[WS(rs, 5)] = T3H + T3I; T3J = T3k - T3h; T3M = T3K - T3L; Ip[WS(rs, 5)] = T3J + T3M; Im[WS(rs, 2)] = T3M - T3J; } { E T3R, T3Y, T47, T48; T3R = T3P + T3Q; T3Y = T3U + T3X; Ip[WS(rs, 3)] = T3R + T3Y; Im[WS(rs, 4)] = T3Y - T3R; T47 = T3Z + T40; T48 = T44 + T45; Rm[WS(rs, 4)] = T47 - T48; Rp[WS(rs, 3)] = T47 + T48; } { E T41, T42, T43, T46; T41 = T3Z - T40; T42 = T3X - T3U; Rm[0] = T41 - T42; Rp[WS(rs, 7)] = T41 + T42; T43 = T3Q - T3P; T46 = T44 - T45; Ip[WS(rs, 7)] = T43 + T46; Im[0] = T46 - T43; } } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 9}, {TW_CEXP, 1, 15}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, {188, 84, 40, 0} }; void X(codelet_hc2cfdft2_16) (planner *p) { X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT); } #endif