/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:16 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 4 -dit -name hc2cfdft2_4 -include rdft/scalar/hc2cf.h */ /* * This function contains 32 FP additions, 24 FP multiplications, * (or, 24 additions, 16 multiplications, 8 fused multiply/add), * 37 stack variables, 1 constants, and 16 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 4, MAKE_VOLATILE_STRIDE(16, rs)) { E T1, T5, T2, T4, T6, Tc, T3, Tb; T1 = W[0]; T5 = W[3]; T2 = W[2]; T3 = T1 * T2; Tb = T1 * T5; T4 = W[1]; T6 = FMA(T4, T5, T3); Tc = FNMS(T4, T2, Tb); { E Tj, Tp, To, TE, Tw, T9, Tt, Ta, TC, Tf, Tr, Ts, Tx; { E Th, Ti, Tl, Tm, Tn; Th = Ip[0]; Ti = Im[0]; Tj = Th - Ti; Tp = Th + Ti; Tl = Rm[0]; Tm = Rp[0]; Tn = Tl - Tm; To = T1 * Tn; TE = T4 * Tn; Tw = Tm + Tl; } { E T7, T8, Td, Te; T7 = Ip[WS(rs, 1)]; T8 = Im[WS(rs, 1)]; T9 = T7 - T8; Tt = T7 + T8; Ta = T6 * T9; TC = T2 * Tt; Td = Rp[WS(rs, 1)]; Te = Rm[WS(rs, 1)]; Tf = Td + Te; Tr = Td - Te; Ts = T2 * Tr; Tx = T6 * Tf; } { E Tk, TB, Tz, TH, Tv, TA, TG, TI, Tg, Ty; Tg = FNMS(Tc, Tf, Ta); Tk = Tg + Tj; TB = Tj - Tg; Ty = FMA(Tc, T9, Tx); Tz = Tw - Ty; TH = Tw + Ty; { E Tq, Tu, TD, TF; Tq = FNMS(T4, Tp, To); Tu = FMA(T5, Tt, Ts); Tv = Tq - Tu; TA = Tu + Tq; TD = FNMS(T5, Tr, TC); TF = FMA(T1, Tp, TE); TG = TD - TF; TI = TD + TF; } Ip[0] = KP500000000 * (Tk + Tv); Rp[0] = KP500000000 * (TH + TI); Im[WS(rs, 1)] = KP500000000 * (Tv - Tk); Rm[WS(rs, 1)] = KP500000000 * (TH - TI); Rm[0] = KP500000000 * (Tz - TA); Im[0] = KP500000000 * (TG - TB); Rp[WS(rs, 1)] = KP500000000 * (Tz + TA); Ip[WS(rs, 1)] = KP500000000 * (TB + TG); } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 4, "hc2cfdft2_4", twinstr, &GENUS, {24, 16, 8, 0} }; void X(codelet_hc2cfdft2_4) (planner *p) { X(khc2c_register) (p, hc2cfdft2_4, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 4 -dit -name hc2cfdft2_4 -include rdft/scalar/hc2cf.h */ /* * This function contains 32 FP additions, 24 FP multiplications, * (or, 24 additions, 16 multiplications, 8 fused multiply/add), * 24 stack variables, 1 constants, and 16 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 4, MAKE_VOLATILE_STRIDE(16, rs)) { E T1, T3, T2, T4, T5, T9; T1 = W[0]; T3 = W[1]; T2 = W[2]; T4 = W[3]; T5 = FMA(T1, T2, T3 * T4); T9 = FNMS(T3, T2, T1 * T4); { E Tg, Tr, Tm, Tx, Td, Tw, Tp, Ts; { E Te, Tf, Tl, Ti, Tj, Tk; Te = Ip[0]; Tf = Im[0]; Tl = Te + Tf; Ti = Rm[0]; Tj = Rp[0]; Tk = Ti - Tj; Tg = Te - Tf; Tr = Tj + Ti; Tm = FNMS(T3, Tl, T1 * Tk); Tx = FMA(T3, Tk, T1 * Tl); } { E T8, To, Tc, Tn; { E T6, T7, Ta, Tb; T6 = Ip[WS(rs, 1)]; T7 = Im[WS(rs, 1)]; T8 = T6 - T7; To = T6 + T7; Ta = Rp[WS(rs, 1)]; Tb = Rm[WS(rs, 1)]; Tc = Ta + Tb; Tn = Ta - Tb; } Td = FNMS(T9, Tc, T5 * T8); Tw = FNMS(T4, Tn, T2 * To); Tp = FMA(T2, Tn, T4 * To); Ts = FMA(T5, Tc, T9 * T8); } { E Th, Tq, Tz, TA; Th = Td + Tg; Tq = Tm - Tp; Ip[0] = KP500000000 * (Th + Tq); Im[WS(rs, 1)] = KP500000000 * (Tq - Th); Tz = Tr + Ts; TA = Tw + Tx; Rm[WS(rs, 1)] = KP500000000 * (Tz - TA); Rp[0] = KP500000000 * (Tz + TA); } { E Tt, Tu, Tv, Ty; Tt = Tr - Ts; Tu = Tp + Tm; Rm[0] = KP500000000 * (Tt - Tu); Rp[WS(rs, 1)] = KP500000000 * (Tt + Tu); Tv = Tg - Td; Ty = Tw - Tx; Ip[WS(rs, 1)] = KP500000000 * (Tv + Ty); Im[0] = KP500000000 * (Ty - Tv); } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 4, "hc2cfdft2_4", twinstr, &GENUS, {24, 16, 8, 0} }; void X(codelet_hc2cfdft2_4) (planner *p) { X(khc2c_register) (p, hc2cfdft2_4, &desc, HC2C_VIA_DFT); } #endif