/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:16 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hc2cfdft2_8 -include rdft/scalar/hc2cf.h */ /* * This function contains 90 FP additions, 66 FP multiplications, * (or, 60 additions, 36 multiplications, 30 fused multiply/add), * 45 stack variables, 2 constants, and 32 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) { E T1, T2, Th, Tj, T4, T5, T6, Tk, TB, Tq, Tw, Tc, TM, TQ; { E T3, Ti, Tp, Tb, TL, TP; T1 = W[0]; T2 = W[2]; T3 = T1 * T2; Th = W[4]; Ti = T1 * Th; Tj = W[5]; Tp = T1 * Tj; T4 = W[1]; T5 = W[3]; Tb = T1 * T5; T6 = FMA(T4, T5, T3); Tk = FMA(T4, Tj, Ti); TB = FMA(T4, T2, Tb); Tq = FNMS(T4, Th, Tp); Tw = FNMS(T4, T5, T3); TL = T6 * Th; TP = T6 * Tj; Tc = FNMS(T4, T2, Tb); TM = FMA(Tc, Tj, TL); TQ = FNMS(Tc, Th, TP); } { E TI, T1a, TY, T1u, TF, T1s, TS, T1c, Tg, T1n, T13, T1f, Tu, T1p, T17; E T1h; { E TG, TH, TX, TT, TU, TV, TW, T1t; TG = Ip[0]; TH = Im[0]; TX = TG + TH; TT = Rm[0]; TU = Rp[0]; TV = TT - TU; TI = TG - TH; T1a = TU + TT; TW = T1 * TV; TY = FNMS(T4, TX, TW); T1t = T4 * TV; T1u = FMA(T1, TX, T1t); } { E Tz, TR, TE, TN; { E Tx, Ty, TC, TD; Tx = Ip[WS(rs, 2)]; Ty = Im[WS(rs, 2)]; Tz = Tx - Ty; TR = Tx + Ty; TC = Rp[WS(rs, 2)]; TD = Rm[WS(rs, 2)]; TE = TC + TD; TN = TD - TC; } { E TA, T1r, TO, T1b; TA = Tw * Tz; TF = FNMS(TB, TE, TA); T1r = TQ * TN; T1s = FMA(TM, TR, T1r); TO = TM * TN; TS = FNMS(TQ, TR, TO); T1b = Tw * TE; T1c = FMA(TB, Tz, T1b); } } { E T9, T12, Tf, T10; { E T7, T8, Td, Te; T7 = Ip[WS(rs, 1)]; T8 = Im[WS(rs, 1)]; T9 = T7 - T8; T12 = T7 + T8; Td = Rp[WS(rs, 1)]; Te = Rm[WS(rs, 1)]; Tf = Td + Te; T10 = Td - Te; } { E Ta, T1m, T11, T1e; Ta = T6 * T9; Tg = FNMS(Tc, Tf, Ta); T1m = T2 * T12; T1n = FNMS(T5, T10, T1m); T11 = T2 * T10; T13 = FMA(T5, T12, T11); T1e = T6 * Tf; T1f = FMA(Tc, T9, T1e); } } { E Tn, T16, Tt, T14; { E Tl, Tm, Tr, Ts; Tl = Ip[WS(rs, 3)]; Tm = Im[WS(rs, 3)]; Tn = Tl - Tm; T16 = Tl + Tm; Tr = Rp[WS(rs, 3)]; Ts = Rm[WS(rs, 3)]; Tt = Tr + Ts; T14 = Tr - Ts; } { E To, T1o, T15, T1g; To = Tk * Tn; Tu = FNMS(Tq, Tt, To); T1o = Th * T16; T1p = FNMS(Tj, T14, T1o); T15 = Th * T14; T17 = FMA(Tj, T16, T15); T1g = Tk * Tt; T1h = FMA(Tq, Tn, T1g); } } { E TK, T1l, T1w, T1y, T19, T1k, T1j, T1x; { E Tv, TJ, T1q, T1v; Tv = Tg + Tu; TJ = TF + TI; TK = Tv + TJ; T1l = TJ - Tv; T1q = T1n + T1p; T1v = T1s + T1u; T1w = T1q - T1v; T1y = T1q + T1v; } { E TZ, T18, T1d, T1i; TZ = TS + TY; T18 = T13 + T17; T19 = TZ - T18; T1k = T18 + TZ; T1d = T1a + T1c; T1i = T1f + T1h; T1j = T1d - T1i; T1x = T1d + T1i; } Ip[0] = KP500000000 * (TK + T19); Rp[0] = KP500000000 * (T1x + T1y); Im[WS(rs, 3)] = KP500000000 * (T19 - TK); Rm[WS(rs, 3)] = KP500000000 * (T1x - T1y); Rm[WS(rs, 1)] = KP500000000 * (T1j - T1k); Im[WS(rs, 1)] = KP500000000 * (T1w - T1l); Rp[WS(rs, 2)] = KP500000000 * (T1j + T1k); Ip[WS(rs, 2)] = KP500000000 * (T1l + T1w); } { E T1B, T1N, T1L, T1R, T1E, T1O, T1H, T1P; { E T1z, T1A, T1J, T1K; T1z = TI - TF; T1A = T1f - T1h; T1B = T1z - T1A; T1N = T1A + T1z; T1J = T1a - T1c; T1K = Tg - Tu; T1L = T1J - T1K; T1R = T1J + T1K; } { E T1C, T1D, T1F, T1G; T1C = T1p - T1n; T1D = T13 - T17; T1E = T1C + T1D; T1O = T1C - T1D; T1F = TY - TS; T1G = T1u - T1s; T1H = T1F - T1G; T1P = T1F + T1G; } { E T1I, T1S, T1M, T1Q; T1I = T1E + T1H; Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1I, T1B)); Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1I, T1B))); T1S = T1O + T1P; Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1S, T1R)); Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1S, T1R)); T1M = T1H - T1E; Rm[0] = KP500000000 * (FNMS(KP707106781, T1M, T1L)); Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1M, T1L)); T1Q = T1O - T1P; Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1Q, T1N)); Im[0] = -(KP500000000 * (FNMS(KP707106781, T1Q, T1N))); } } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 7}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 8, "hc2cfdft2_8", twinstr, &GENUS, {60, 36, 30, 0} }; void X(codelet_hc2cfdft2_8) (planner *p) { X(khc2c_register) (p, hc2cfdft2_8, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hc2cfdft2_8 -include rdft/scalar/hc2cf.h */ /* * This function contains 90 FP additions, 56 FP multiplications, * (or, 72 additions, 38 multiplications, 18 fused multiply/add), * 51 stack variables, 2 constants, and 32 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP353553390, +0.353553390593273762200422181052424519642417969); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) { E T1, T4, T2, T5, Tu, Ty, T7, Td, Ti, Tj, Tk, TP, To, TN; { E T3, Tc, T6, Tb; T1 = W[0]; T4 = W[1]; T2 = W[2]; T5 = W[3]; T3 = T1 * T2; Tc = T4 * T2; T6 = T4 * T5; Tb = T1 * T5; Tu = T3 - T6; Ty = Tb + Tc; T7 = T3 + T6; Td = Tb - Tc; Ti = W[4]; Tj = W[5]; Tk = FMA(T1, Ti, T4 * Tj); TP = FNMS(Td, Ti, T7 * Tj); To = FNMS(T4, Ti, T1 * Tj); TN = FMA(T7, Ti, Td * Tj); } { E TF, T11, TC, T12, T1d, T1e, T1q, TM, TR, T1p, Th, Ts, T15, T14, T1a; E T1b, T1m, TV, TY, T1n; { E TD, TE, TL, TI, TJ, TK, Tx, TQ, TB, TO; TD = Ip[0]; TE = Im[0]; TL = TD + TE; TI = Rm[0]; TJ = Rp[0]; TK = TI - TJ; { E Tv, Tw, Tz, TA; Tv = Ip[WS(rs, 2)]; Tw = Im[WS(rs, 2)]; Tx = Tv - Tw; TQ = Tv + Tw; Tz = Rp[WS(rs, 2)]; TA = Rm[WS(rs, 2)]; TB = Tz + TA; TO = Tz - TA; } TF = TD - TE; T11 = TJ + TI; TC = FNMS(Ty, TB, Tu * Tx); T12 = FMA(Tu, TB, Ty * Tx); T1d = FNMS(TP, TO, TN * TQ); T1e = FMA(T4, TK, T1 * TL); T1q = T1e - T1d; TM = FNMS(T4, TL, T1 * TK); TR = FMA(TN, TO, TP * TQ); T1p = TR + TM; } { E Ta, TU, Tg, TT, Tn, TX, Tr, TW; { E T8, T9, Te, Tf; T8 = Ip[WS(rs, 1)]; T9 = Im[WS(rs, 1)]; Ta = T8 - T9; TU = T8 + T9; Te = Rp[WS(rs, 1)]; Tf = Rm[WS(rs, 1)]; Tg = Te + Tf; TT = Te - Tf; } { E Tl, Tm, Tp, Tq; Tl = Ip[WS(rs, 3)]; Tm = Im[WS(rs, 3)]; Tn = Tl - Tm; TX = Tl + Tm; Tp = Rp[WS(rs, 3)]; Tq = Rm[WS(rs, 3)]; Tr = Tp + Tq; TW = Tp - Tq; } Th = FNMS(Td, Tg, T7 * Ta); Ts = FNMS(To, Tr, Tk * Tn); T15 = FMA(Tk, Tr, To * Tn); T14 = FMA(T7, Tg, Td * Ta); T1a = FNMS(T5, TT, T2 * TU); T1b = FNMS(Tj, TW, Ti * TX); T1m = T1b - T1a; TV = FMA(T2, TT, T5 * TU); TY = FMA(Ti, TW, Tj * TX); T1n = TV - TY; } { E T1l, T1x, T1A, T1C, T1s, T1w, T1v, T1B; { E T1j, T1k, T1y, T1z; T1j = TF - TC; T1k = T14 - T15; T1l = KP500000000 * (T1j - T1k); T1x = KP500000000 * (T1k + T1j); T1y = T1m - T1n; T1z = T1p + T1q; T1A = KP353553390 * (T1y - T1z); T1C = KP353553390 * (T1y + T1z); } { E T1o, T1r, T1t, T1u; T1o = T1m + T1n; T1r = T1p - T1q; T1s = KP353553390 * (T1o + T1r); T1w = KP353553390 * (T1r - T1o); T1t = T11 - T12; T1u = Th - Ts; T1v = KP500000000 * (T1t - T1u); T1B = KP500000000 * (T1t + T1u); } Ip[WS(rs, 1)] = T1l + T1s; Rp[WS(rs, 1)] = T1B + T1C; Im[WS(rs, 2)] = T1s - T1l; Rm[WS(rs, 2)] = T1B - T1C; Rm[0] = T1v - T1w; Im[0] = T1A - T1x; Rp[WS(rs, 3)] = T1v + T1w; Ip[WS(rs, 3)] = T1x + T1A; } { E TH, T19, T1g, T1i, T10, T18, T17, T1h; { E Tt, TG, T1c, T1f; Tt = Th + Ts; TG = TC + TF; TH = Tt + TG; T19 = TG - Tt; T1c = T1a + T1b; T1f = T1d + T1e; T1g = T1c - T1f; T1i = T1c + T1f; } { E TS, TZ, T13, T16; TS = TM - TR; TZ = TV + TY; T10 = TS - TZ; T18 = TZ + TS; T13 = T11 + T12; T16 = T14 + T15; T17 = T13 - T16; T1h = T13 + T16; } Ip[0] = KP500000000 * (TH + T10); Rp[0] = KP500000000 * (T1h + T1i); Im[WS(rs, 3)] = KP500000000 * (T10 - TH); Rm[WS(rs, 3)] = KP500000000 * (T1h - T1i); Rm[WS(rs, 1)] = KP500000000 * (T17 - T18); Im[WS(rs, 1)] = KP500000000 * (T1g - T19); Rp[WS(rs, 2)] = KP500000000 * (T17 + T18); Ip[WS(rs, 2)] = KP500000000 * (T19 + T1g); } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 7}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 8, "hc2cfdft2_8", twinstr, &GENUS, {72, 38, 18, 0} }; void X(codelet_hc2cfdft2_8) (planner *p) { X(khc2c_register) (p, hc2cfdft2_8, &desc, HC2C_VIA_DFT); } #endif