/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:11 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cfdft_10 -include rdft/scalar/hc2cf.h */ /* * This function contains 122 FP additions, 92 FP multiplications, * (or, 68 additions, 38 multiplications, 54 fused multiply/add), * 81 stack variables, 5 constants, and 40 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); { INT m; for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { E T3, T1u, Td, T1w, T1S, T2f, T14, T1p, T1j, T1q, T1N, T2e, TQ, T2i, T1n; E T1H, Tz, T2h, T1m, T1C; { E T1, T2, T1h, Tc, TW, T1c, T1d, T1b, T1f, T1g, T1Q, T7, TV, T1J, TS; E TU, Ts, Tx, T19, T18, T1O, T15, T17, Tt, T1A, Ti, Tn, TE, TD, T1F; E TA, TC, Tj, T1y, TJ, TO, T12, T11, T1L, TY, T10, TK, T1D; { E Ta, Tb, T1e, T5, T6, TT; T1 = Ip[0]; T2 = Im[0]; T1h = T1 + T2; Ta = Rp[WS(rs, 2)]; Tb = Rm[WS(rs, 2)]; Tc = Ta - Tb; TW = Ta + Tb; T1c = Rm[0]; T1d = Rp[0]; T1e = T1c - T1d; T1b = W[0]; T1f = T1b * T1e; T1g = W[1]; T1Q = T1g * T1e; T5 = Ip[WS(rs, 2)]; T6 = Im[WS(rs, 2)]; TT = T5 - T6; T7 = T5 + T6; TV = W[7]; T1J = TV * TT; TS = W[6]; TU = TS * TT; { E Tq, Tr, T16, Tv, Tw, Tp; Tq = Rm[WS(rs, 3)]; Tr = Rp[WS(rs, 3)]; Ts = Tq - Tr; Tv = Ip[WS(rs, 3)]; Tw = Im[WS(rs, 3)]; Tx = Tv + Tw; T16 = Tv - Tw; T19 = Tr + Tq; T18 = W[11]; T1O = T18 * T16; T15 = W[10]; T17 = T15 * T16; Tp = W[12]; Tt = Tp * Ts; T1A = Tp * Tx; } { E Tg, Th, TB, Tl, Tm, Tf; Tg = Ip[WS(rs, 1)]; Th = Im[WS(rs, 1)]; Ti = Tg - Th; Tl = Rp[WS(rs, 1)]; Tm = Rm[WS(rs, 1)]; Tn = Tl + Tm; TB = Tm - Tl; TE = Tg + Th; TD = W[5]; T1F = TD * TB; TA = W[4]; TC = TA * TB; Tf = W[2]; Tj = Tf * Ti; T1y = Tf * Tn; } { E TH, TI, TZ, TM, TN, TG; TH = Ip[WS(rs, 4)]; TI = Im[WS(rs, 4)]; TJ = TH - TI; TM = Rp[WS(rs, 4)]; TN = Rm[WS(rs, 4)]; TO = TM + TN; TZ = TN - TM; T12 = TH + TI; T11 = W[17]; T1L = T11 * TZ; TY = W[16]; T10 = TY * TZ; TG = W[14]; TK = TG * TJ; T1D = TG * TO; } } { E T1P, T1R, T1K, T1M; T3 = T1 - T2; T1u = T1d + T1c; { E T4, T8, T9, T1v; T4 = W[9]; T8 = T4 * T7; T9 = W[8]; T1v = T9 * T7; Td = FMA(T9, Tc, T8); T1w = FNMS(T4, Tc, T1v); } T1P = FMA(T15, T19, T1O); T1R = FMA(T1b, T1h, T1Q); T1S = T1P - T1R; T2f = T1P + T1R; { E TX, T13, T1a, T1i; TX = FNMS(TV, TW, TU); T13 = FNMS(T11, T12, T10); T14 = TX + T13; T1p = T13 - TX; T1a = FNMS(T18, T19, T17); T1i = FNMS(T1g, T1h, T1f); T1j = T1a + T1i; T1q = T1i - T1a; } T1K = FMA(TS, TW, T1J); T1M = FMA(TY, T12, T1L); T1N = T1K - T1M; T2e = T1K + T1M; { E TF, T1G, TP, T1E, TL; TF = FNMS(TD, TE, TC); T1G = FMA(TA, TE, T1F); TL = W[15]; TP = FNMS(TL, TO, TK); T1E = FMA(TL, TJ, T1D); TQ = TF + TP; T2i = T1G + T1E; T1n = TF - TP; T1H = T1E - T1G; } { E To, T1z, Ty, T1B, Tk, Tu; Tk = W[3]; To = FNMS(Tk, Tn, Tj); T1z = FMA(Tk, Ti, T1y); Tu = W[13]; Ty = FNMS(Tu, Tx, Tt); T1B = FMA(Tu, Ts, T1A); Tz = To + Ty; T2h = T1z + T1B; T1m = Ty - To; T1C = T1z - T1B; } } } { E T2k, T2m, Te, T1l, T2b, T2c, T2l, T2d; { E T2g, T2j, TR, T1k; T2g = T2e - T2f; T2j = T2h - T2i; T2k = FNMS(KP618033988, T2j, T2g); T2m = FMA(KP618033988, T2g, T2j); Te = T3 - Td; TR = Tz + TQ; T1k = T14 + T1j; T1l = TR + T1k; T2b = FNMS(KP250000000, T1l, Te); T2c = TR - T1k; } Ip[0] = KP500000000 * (Te + T1l); T2l = FMA(KP559016994, T2c, T2b); Ip[WS(rs, 4)] = KP500000000 * (FMA(KP951056516, T2m, T2l)); Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP951056516, T2m, T2l))); T2d = FNMS(KP559016994, T2c, T2b); Ip[WS(rs, 2)] = KP500000000 * (FMA(KP951056516, T2k, T2d)); Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP951056516, T2k, T2d))); } { E T2w, T2y, T2n, T2q, T2r, T2s, T2x, T2t; { E T2u, T2v, T2o, T2p; T2u = T14 - T1j; T2v = Tz - TQ; T2w = FNMS(KP618033988, T2v, T2u); T2y = FMA(KP618033988, T2u, T2v); T2n = T1u + T1w; T2o = T2h + T2i; T2p = T2e + T2f; T2q = T2o + T2p; T2r = FNMS(KP250000000, T2q, T2n); T2s = T2o - T2p; } Rp[0] = KP500000000 * (T2n + T2q); T2x = FMA(KP559016994, T2s, T2r); Rp[WS(rs, 4)] = KP500000000 * (FNMS(KP951056516, T2y, T2x)); Rm[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T2y, T2x)); T2t = FNMS(KP559016994, T2s, T2r); Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T2w, T2t)); Rm[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T2w, T2t)); } { E T28, T2a, T1t, T1s, T23, T24, T29, T25; { E T26, T27, T1o, T1r; T26 = T1H - T1C; T27 = T1S - T1N; T28 = FMA(KP618033988, T27, T26); T2a = FNMS(KP618033988, T26, T27); T1t = Td + T3; T1o = T1m + T1n; T1r = T1p + T1q; T1s = T1o + T1r; T23 = FMA(KP250000000, T1s, T1t); T24 = T1r - T1o; } Im[WS(rs, 4)] = KP500000000 * (T1s - T1t); T29 = FNMS(KP559016994, T24, T23); Ip[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T2a, T29)); Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP951056516, T2a, T29))); T25 = FMA(KP559016994, T24, T23); Ip[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T28, T25)); Im[0] = -(KP500000000 * (FNMS(KP951056516, T28, T25))); } { E T20, T22, T1x, T1U, T1V, T1W, T21, T1X; { E T1Y, T1Z, T1I, T1T; T1Y = T1n - T1m; T1Z = T1q - T1p; T20 = FMA(KP618033988, T1Z, T1Y); T22 = FNMS(KP618033988, T1Y, T1Z); T1x = T1u - T1w; T1I = T1C + T1H; T1T = T1N + T1S; T1U = T1I + T1T; T1V = FNMS(KP250000000, T1U, T1x); T1W = T1I - T1T; } Rm[WS(rs, 4)] = KP500000000 * (T1x + T1U); T21 = FNMS(KP559016994, T1W, T1V); Rp[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T22, T21)); Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T22, T21)); T1X = FMA(KP559016994, T1W, T1V); Rp[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T20, T1X)); Rm[0] = KP500000000 * (FNMS(KP951056516, T20, T1X)); } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 10}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 10, "hc2cfdft_10", twinstr, &GENUS, {68, 38, 54, 0} }; void X(codelet_hc2cfdft_10) (planner *p) { X(khc2c_register) (p, hc2cfdft_10, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cfdft_10 -include rdft/scalar/hc2cf.h */ /* * This function contains 122 FP additions, 68 FP multiplications, * (or, 92 additions, 38 multiplications, 30 fused multiply/add), * 62 stack variables, 5 constants, and 40 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP293892626, +0.293892626146236564584352977319536384298826219); DK(KP475528258, +0.475528258147576786058219666689691071702849317); DK(KP125000000, +0.125000000000000000000000000000000000000000000); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP279508497, +0.279508497187473712051146708591409529430077295); { INT m; for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { E Tw, TL, TM, T1W, T1X, T27, T1Z, T20, T26, TX, T1a, T1b, T1d, T1e, T1f; E T1q, T1t, T1u, T1x, T1A, T1B, T1g, T1h, T1i, Td, T25, T1k, T1F; { E T3, T1D, T19, T1z, T7, Tb, TR, T1v, Tm, T1o, TK, T1s, Tv, T1p, T12; E T1y, TF, T1r, TW, T1w; { E T1, T2, T18, T14, T15, T16, T13, T17; T1 = Ip[0]; T2 = Im[0]; T18 = T1 + T2; T14 = Rm[0]; T15 = Rp[0]; T16 = T14 - T15; T3 = T1 - T2; T1D = T15 + T14; T13 = W[0]; T17 = W[1]; T19 = FNMS(T17, T18, T13 * T16); T1z = FMA(T17, T16, T13 * T18); } { E T5, T6, TO, T9, Ta, TQ, TN, TP; T5 = Ip[WS(rs, 2)]; T6 = Im[WS(rs, 2)]; TO = T5 - T6; T9 = Rp[WS(rs, 2)]; Ta = Rm[WS(rs, 2)]; TQ = T9 + Ta; T7 = T5 + T6; Tb = T9 - Ta; TN = W[6]; TP = W[7]; TR = FNMS(TP, TQ, TN * TO); T1v = FMA(TP, TO, TN * TQ); } { E Th, TJ, Tl, TH; { E Tf, Tg, Tj, Tk; Tf = Ip[WS(rs, 1)]; Tg = Im[WS(rs, 1)]; Th = Tf - Tg; TJ = Tf + Tg; Tj = Rp[WS(rs, 1)]; Tk = Rm[WS(rs, 1)]; Tl = Tj + Tk; TH = Tj - Tk; } { E Te, Ti, TG, TI; Te = W[2]; Ti = W[3]; Tm = FNMS(Ti, Tl, Te * Th); T1o = FMA(Te, Tl, Ti * Th); TG = W[4]; TI = W[5]; TK = FMA(TG, TH, TI * TJ); T1s = FNMS(TI, TH, TG * TJ); } } { E Tq, TZ, Tu, T11; { E To, Tp, Ts, Tt; To = Ip[WS(rs, 3)]; Tp = Im[WS(rs, 3)]; Tq = To + Tp; TZ = To - Tp; Ts = Rp[WS(rs, 3)]; Tt = Rm[WS(rs, 3)]; Tu = Ts - Tt; T11 = Ts + Tt; } { E Tn, Tr, TY, T10; Tn = W[13]; Tr = W[12]; Tv = FMA(Tn, Tq, Tr * Tu); T1p = FNMS(Tn, Tu, Tr * Tq); TY = W[10]; T10 = W[11]; T12 = FNMS(T10, T11, TY * TZ); T1y = FMA(T10, TZ, TY * T11); } } { E TA, TV, TE, TT; { E Ty, Tz, TC, TD; Ty = Ip[WS(rs, 4)]; Tz = Im[WS(rs, 4)]; TA = Ty - Tz; TV = Ty + Tz; TC = Rp[WS(rs, 4)]; TD = Rm[WS(rs, 4)]; TE = TC + TD; TT = TC - TD; } { E Tx, TB, TS, TU; Tx = W[14]; TB = W[15]; TF = FNMS(TB, TE, Tx * TA); T1r = FMA(Tx, TE, TB * TA); TS = W[16]; TU = W[17]; TW = FMA(TS, TT, TU * TV); T1w = FNMS(TU, TT, TS * TV); } } Tw = Tm - Tv; TL = TF - TK; TM = Tw + TL; T1W = T1v + T1w; T1X = T1y + T1z; T27 = T1W + T1X; T1Z = T1o + T1p; T20 = T1s + T1r; T26 = T1Z + T20; TX = TR - TW; T1a = T12 + T19; T1b = TX + T1a; T1d = T19 - T12; T1e = TR + TW; T1f = T1d - T1e; T1q = T1o - T1p; T1t = T1r - T1s; T1u = T1q + T1t; T1x = T1v - T1w; T1A = T1y - T1z; T1B = T1x + T1A; T1g = Tm + Tv; T1h = TK + TF; T1i = T1g + T1h; { E Tc, T1E, T4, T8; T4 = W[9]; T8 = W[8]; Tc = FMA(T4, T7, T8 * Tb); T1E = FNMS(T4, Tb, T8 * T7); Td = T3 - Tc; T25 = T1D + T1E; T1k = Tc + T3; T1F = T1D - T1E; } } { E T1U, T1c, T1T, T22, T24, T1Y, T21, T23, T1V; T1U = KP279508497 * (TM - T1b); T1c = TM + T1b; T1T = FNMS(KP125000000, T1c, KP500000000 * Td); T1Y = T1W - T1X; T21 = T1Z - T20; T22 = FNMS(KP293892626, T21, KP475528258 * T1Y); T24 = FMA(KP475528258, T21, KP293892626 * T1Y); Ip[0] = KP500000000 * (Td + T1c); T23 = T1U + T1T; Ip[WS(rs, 4)] = T23 + T24; Im[WS(rs, 3)] = T24 - T23; T1V = T1T - T1U; Ip[WS(rs, 2)] = T1V + T22; Im[WS(rs, 1)] = T22 - T1V; } { E T2a, T28, T29, T2e, T2g, T2c, T2d, T2f, T2b; T2a = KP279508497 * (T26 - T27); T28 = T26 + T27; T29 = FNMS(KP125000000, T28, KP500000000 * T25); T2c = TX - T1a; T2d = Tw - TL; T2e = FNMS(KP293892626, T2d, KP475528258 * T2c); T2g = FMA(KP475528258, T2d, KP293892626 * T2c); Rp[0] = KP500000000 * (T25 + T28); T2f = T2a + T29; Rp[WS(rs, 4)] = T2f - T2g; Rm[WS(rs, 3)] = T2g + T2f; T2b = T29 - T2a; Rp[WS(rs, 2)] = T2b - T2e; Rm[WS(rs, 1)] = T2e + T2b; } { E T1M, T1j, T1L, T1Q, T1S, T1O, T1P, T1R, T1N; T1M = KP279508497 * (T1i + T1f); T1j = T1f - T1i; T1L = FMA(KP500000000, T1k, KP125000000 * T1j); T1O = T1A - T1x; T1P = T1q - T1t; T1Q = FNMS(KP475528258, T1P, KP293892626 * T1O); T1S = FMA(KP293892626, T1P, KP475528258 * T1O); Im[WS(rs, 4)] = KP500000000 * (T1j - T1k); T1R = T1L - T1M; Ip[WS(rs, 3)] = T1R + T1S; Im[WS(rs, 2)] = T1S - T1R; T1N = T1L + T1M; Ip[WS(rs, 1)] = T1N + T1Q; Im[0] = T1Q - T1N; } { E T1C, T1G, T1H, T1n, T1J, T1l, T1m, T1K, T1I; T1C = KP279508497 * (T1u - T1B); T1G = T1u + T1B; T1H = FNMS(KP125000000, T1G, KP500000000 * T1F); T1l = T1g - T1h; T1m = T1e + T1d; T1n = FMA(KP475528258, T1l, KP293892626 * T1m); T1J = FNMS(KP293892626, T1l, KP475528258 * T1m); Rm[WS(rs, 4)] = KP500000000 * (T1F + T1G); T1K = T1H - T1C; Rp[WS(rs, 3)] = T1J + T1K; Rm[WS(rs, 2)] = T1K - T1J; T1I = T1C + T1H; Rp[WS(rs, 1)] = T1n + T1I; Rm[0] = T1I - T1n; } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 10}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 10, "hc2cfdft_10", twinstr, &GENUS, {92, 38, 30, 0} }; void X(codelet_hc2cfdft_10) (planner *p) { X(khc2c_register) (p, hc2cfdft_10, &desc, HC2C_VIA_DFT); } #endif