/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:12 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -dit -name hc2cfdft_32 -include rdft/scalar/hc2cf.h */ /* * This function contains 498 FP additions, 324 FP multiplications, * (or, 300 additions, 126 multiplications, 198 fused multiply/add), * 113 stack variables, 8 constants, and 128 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP198912367, +0.198912367379658006911597622644676228597850501); DK(KP668178637, +0.668178637919298919997757686523080761552472251); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) { E T3B, T89, T61, T8l, T2F, T8t, T4B, T7p, T1n, T7L, T5e, T7I, T4u, T82, T5E; E T7R, T3m, T8k, T5W, T8a, T2r, T8u, T4G, T7q, T12, T7K, T59, T7H, T4h, T81; E T5z, T7Q, Tl, T7D, T4Y, T7A, T3Q, T5o, T7V, T84, T1K, T7t, T4M, T7s, T2V; E T8n, T5L, T8e, T25, T7w, T4R, T7v, T38, T8o, T5Q, T8h, TG, T7E, T53, T7B; E T43, T5t, T7Y, T85; { E T2E, T3z, T4y, T3y, T5Z, T3t, T3x, T2v, T2A, T3r, T3q, T5X, T3n, T3p, T2w; E T4z, T3s, T3A; { E T2C, T2D, T3u, T3v, T3w; T2C = Ip[0]; T2D = Im[0]; T2E = T2C - T2D; T3z = T2C + T2D; T3u = Rm[0]; T3v = Rp[0]; T3w = T3u - T3v; T4y = T3v + T3u; T3y = W[1]; T5Z = T3y * T3w; T3t = W[0]; T3x = T3t * T3w; { E T2t, T2u, T3o, T2y, T2z, T2s; T2t = Ip[WS(rs, 8)]; T2u = Im[WS(rs, 8)]; T2v = T2t - T2u; T2y = Rp[WS(rs, 8)]; T2z = Rm[WS(rs, 8)]; T2A = T2y + T2z; T3o = T2z - T2y; T3r = T2t + T2u; T3q = W[33]; T5X = T3q * T3o; T3n = W[32]; T3p = T3n * T3o; T2s = W[30]; T2w = T2s * T2v; T4z = T2s * T2A; } } T3s = FNMS(T3q, T3r, T3p); T3A = FNMS(T3y, T3z, T3x); T3B = T3s + T3A; T89 = T3A - T3s; { E T5Y, T60, T2B, T4A, T2x; T5Y = FMA(T3n, T3r, T5X); T60 = FMA(T3t, T3z, T5Z); T61 = T5Y + T60; T8l = T60 - T5Y; T2x = W[31]; T2B = FNMS(T2x, T2A, T2w); T4A = FMA(T2x, T2v, T4z); T2F = T2B + T2E; T8t = T4y - T4A; T4B = T4y + T4A; T7p = T2E - T2B; } } { E T16, T4m, T1b, T4j, T17, T5a, T4k, T5A, T1g, T4s, T1l, T4p, T1h, T5c, T4q; E T5C; { E T13, T4i, T1d, T4o; { E T14, T15, T19, T1a; T14 = Ip[WS(rs, 3)]; T15 = Im[WS(rs, 3)]; T16 = T14 - T15; T4m = T14 + T15; T19 = Rp[WS(rs, 3)]; T1a = Rm[WS(rs, 3)]; T1b = T19 + T1a; T4j = T19 - T1a; } T13 = W[10]; T17 = T13 * T16; T5a = T13 * T1b; T4i = W[12]; T4k = T4i * T4j; T5A = T4i * T4m; { E T1e, T1f, T1j, T1k; T1e = Ip[WS(rs, 11)]; T1f = Im[WS(rs, 11)]; T1g = T1e - T1f; T4s = T1e + T1f; T1j = Rp[WS(rs, 11)]; T1k = Rm[WS(rs, 11)]; T1l = T1j + T1k; T4p = T1j - T1k; } T1d = W[42]; T1h = T1d * T1g; T5c = T1d * T1l; T4o = W[44]; T4q = T4o * T4p; T5C = T4o * T4s; } { E T1c, T5b, T1m, T5d, T18, T1i; T18 = W[11]; T1c = FNMS(T18, T1b, T17); T5b = FMA(T18, T16, T5a); T1i = W[43]; T1m = FNMS(T1i, T1l, T1h); T5d = FMA(T1i, T1g, T5c); T1n = T1c + T1m; T7L = T1c - T1m; T5e = T5b + T5d; T7I = T5b - T5d; } { E T4n, T5B, T4t, T5D, T4l, T4r; T4l = W[13]; T4n = FMA(T4l, T4m, T4k); T5B = FNMS(T4l, T4j, T5A); T4r = W[45]; T4t = FMA(T4r, T4s, T4q); T5D = FNMS(T4r, T4p, T5C); T4u = T4n + T4t; T82 = T4t - T4n; T5E = T5B + T5D; T7R = T5D - T5B; } } { E T2a, T2f, T3e, T3d, T5S, T3a, T3c, T2b, T4C, T2k, T2p, T3k, T3j, T5U, T3g; E T3i, T2l, T4E; { E T28, T29, T3b, T2d, T2e, T27; T28 = Ip[WS(rs, 4)]; T29 = Im[WS(rs, 4)]; T2a = T28 - T29; T2d = Rp[WS(rs, 4)]; T2e = Rm[WS(rs, 4)]; T2f = T2d + T2e; T3b = T2e - T2d; T3e = T28 + T29; T3d = W[17]; T5S = T3d * T3b; T3a = W[16]; T3c = T3a * T3b; T27 = W[14]; T2b = T27 * T2a; T4C = T27 * T2f; } { E T2i, T2j, T3h, T2n, T2o, T2h; T2i = Ip[WS(rs, 12)]; T2j = Im[WS(rs, 12)]; T2k = T2i - T2j; T2n = Rp[WS(rs, 12)]; T2o = Rm[WS(rs, 12)]; T2p = T2n + T2o; T3h = T2o - T2n; T3k = T2i + T2j; T3j = W[49]; T5U = T3j * T3h; T3g = W[48]; T3i = T3g * T3h; T2h = W[46]; T2l = T2h * T2k; T4E = T2h * T2p; } { E T3f, T3l, T5T, T5V; T3f = FNMS(T3d, T3e, T3c); T3l = FNMS(T3j, T3k, T3i); T3m = T3f + T3l; T8k = T3f - T3l; T5T = FMA(T3a, T3e, T5S); T5V = FMA(T3g, T3k, T5U); T5W = T5T + T5V; T8a = T5T - T5V; { E T2g, T4D, T2q, T4F, T2c, T2m; T2c = W[15]; T2g = FNMS(T2c, T2f, T2b); T4D = FMA(T2c, T2a, T4C); T2m = W[47]; T2q = FNMS(T2m, T2p, T2l); T4F = FMA(T2m, T2k, T4E); T2r = T2g + T2q; T8u = T2g - T2q; T4G = T4D + T4F; T7q = T4D - T4F; } } } { E TL, T49, TQ, T46, TM, T55, T47, T5v, TV, T4f, T10, T4c, TW, T57, T4d; E T5x; { E TI, T45, TS, T4b; { E TJ, TK, TO, TP; TJ = Ip[WS(rs, 15)]; TK = Im[WS(rs, 15)]; TL = TJ - TK; T49 = TJ + TK; TO = Rp[WS(rs, 15)]; TP = Rm[WS(rs, 15)]; TQ = TO + TP; T46 = TO - TP; } TI = W[58]; TM = TI * TL; T55 = TI * TQ; T45 = W[60]; T47 = T45 * T46; T5v = T45 * T49; { E TT, TU, TY, TZ; TT = Ip[WS(rs, 7)]; TU = Im[WS(rs, 7)]; TV = TT - TU; T4f = TT + TU; TY = Rp[WS(rs, 7)]; TZ = Rm[WS(rs, 7)]; T10 = TY + TZ; T4c = TY - TZ; } TS = W[26]; TW = TS * TV; T57 = TS * T10; T4b = W[28]; T4d = T4b * T4c; T5x = T4b * T4f; } { E TR, T56, T11, T58, TN, TX; TN = W[59]; TR = FNMS(TN, TQ, TM); T56 = FMA(TN, TL, T55); TX = W[27]; T11 = FNMS(TX, T10, TW); T58 = FMA(TX, TV, T57); T12 = TR + T11; T7K = T56 - T58; T59 = T56 + T58; T7H = TR - T11; } { E T4a, T5w, T4g, T5y, T48, T4e; T48 = W[61]; T4a = FMA(T48, T49, T47); T5w = FNMS(T48, T46, T5v); T4e = W[29]; T4g = FMA(T4e, T4f, T4d); T5y = FNMS(T4e, T4c, T5x); T4h = T4a + T4g; T81 = T5w - T5y; T5z = T5w + T5y; T7Q = T4g - T4a; } } { E T4, T3I, T9, T3F, T5, T4U, T3G, T5k, Te, T3O, Tj, T3L, Tf, T4W, T3M; E T5m; { E T1, T3E, Tb, T3K; { E T2, T3, T7, T8; T2 = Ip[WS(rs, 1)]; T3 = Im[WS(rs, 1)]; T4 = T2 - T3; T3I = T2 + T3; T7 = Rp[WS(rs, 1)]; T8 = Rm[WS(rs, 1)]; T9 = T7 + T8; T3F = T7 - T8; } T1 = W[2]; T5 = T1 * T4; T4U = T1 * T9; T3E = W[4]; T3G = T3E * T3F; T5k = T3E * T3I; { E Tc, Td, Th, Ti; Tc = Ip[WS(rs, 9)]; Td = Im[WS(rs, 9)]; Te = Tc - Td; T3O = Tc + Td; Th = Rp[WS(rs, 9)]; Ti = Rm[WS(rs, 9)]; Tj = Th + Ti; T3L = Th - Ti; } Tb = W[34]; Tf = Tb * Te; T4W = Tb * Tj; T3K = W[36]; T3M = T3K * T3L; T5m = T3K * T3O; } { E Ta, T4V, Tk, T4X, T6, Tg; T6 = W[3]; Ta = FNMS(T6, T9, T5); T4V = FMA(T6, T4, T4U); Tg = W[35]; Tk = FNMS(Tg, Tj, Tf); T4X = FMA(Tg, Te, T4W); Tl = Ta + Tk; T7D = T4V - T4X; T4Y = T4V + T4X; T7A = Ta - Tk; } { E T3J, T5l, T3P, T5n, T3H, T3N, T7T, T7U; T3H = W[5]; T3J = FMA(T3H, T3I, T3G); T5l = FNMS(T3H, T3F, T5k); T3N = W[37]; T3P = FMA(T3N, T3O, T3M); T5n = FNMS(T3N, T3L, T5m); T3Q = T3J + T3P; T5o = T5l + T5n; T7T = T3P - T3J; T7U = T5l - T5n; T7V = T7T - T7U; T84 = T7U + T7T; } } { E T1t, T1y, T2N, T2M, T5H, T2J, T2L, T1u, T4I, T1D, T1I, T2T, T2S, T5J, T2P; E T2R, T1E, T4K; { E T1r, T1s, T2K, T1w, T1x, T1q; T1r = Ip[WS(rs, 2)]; T1s = Im[WS(rs, 2)]; T1t = T1r - T1s; T1w = Rp[WS(rs, 2)]; T1x = Rm[WS(rs, 2)]; T1y = T1w + T1x; T2K = T1x - T1w; T2N = T1r + T1s; T2M = W[9]; T5H = T2M * T2K; T2J = W[8]; T2L = T2J * T2K; T1q = W[6]; T1u = T1q * T1t; T4I = T1q * T1y; } { E T1B, T1C, T2Q, T1G, T1H, T1A; T1B = Ip[WS(rs, 10)]; T1C = Im[WS(rs, 10)]; T1D = T1B - T1C; T1G = Rp[WS(rs, 10)]; T1H = Rm[WS(rs, 10)]; T1I = T1G + T1H; T2Q = T1H - T1G; T2T = T1B + T1C; T2S = W[41]; T5J = T2S * T2Q; T2P = W[40]; T2R = T2P * T2Q; T1A = W[38]; T1E = T1A * T1D; T4K = T1A * T1I; } { E T1z, T4J, T1J, T4L, T1v, T1F; T1v = W[7]; T1z = FNMS(T1v, T1y, T1u); T4J = FMA(T1v, T1t, T4I); T1F = W[39]; T1J = FNMS(T1F, T1I, T1E); T4L = FMA(T1F, T1D, T4K); T1K = T1z + T1J; T7t = T4J - T4L; T4M = T4J + T4L; T7s = T1z - T1J; } { E T2O, T2U, T8c, T5I, T5K, T8d; T2O = FNMS(T2M, T2N, T2L); T2U = FNMS(T2S, T2T, T2R); T8c = T2O - T2U; T5I = FMA(T2J, T2N, T5H); T5K = FMA(T2P, T2T, T5J); T8d = T5I - T5K; T2V = T2O + T2U; T8n = T8c + T8d; T5L = T5I + T5K; T8e = T8c - T8d; } } { E T1O, T1T, T30, T2Z, T5M, T2W, T2Y, T1P, T4N, T1Y, T23, T36, T35, T5O, T32; E T34, T1Z, T4P; { E T1M, T1N, T2X, T1R, T1S, T1L; T1M = Ip[WS(rs, 14)]; T1N = Im[WS(rs, 14)]; T1O = T1M - T1N; T1R = Rp[WS(rs, 14)]; T1S = Rm[WS(rs, 14)]; T1T = T1R + T1S; T2X = T1S - T1R; T30 = T1M + T1N; T2Z = W[57]; T5M = T2Z * T2X; T2W = W[56]; T2Y = T2W * T2X; T1L = W[54]; T1P = T1L * T1O; T4N = T1L * T1T; } { E T1W, T1X, T33, T21, T22, T1V; T1W = Ip[WS(rs, 6)]; T1X = Im[WS(rs, 6)]; T1Y = T1W - T1X; T21 = Rp[WS(rs, 6)]; T22 = Rm[WS(rs, 6)]; T23 = T21 + T22; T33 = T22 - T21; T36 = T1W + T1X; T35 = W[25]; T5O = T35 * T33; T32 = W[24]; T34 = T32 * T33; T1V = W[22]; T1Z = T1V * T1Y; T4P = T1V * T23; } { E T1U, T4O, T24, T4Q, T1Q, T20; T1Q = W[55]; T1U = FNMS(T1Q, T1T, T1P); T4O = FMA(T1Q, T1O, T4N); T20 = W[23]; T24 = FNMS(T20, T23, T1Z); T4Q = FMA(T20, T1Y, T4P); T25 = T1U + T24; T7w = T1U - T24; T4R = T4O + T4Q; T7v = T4O - T4Q; } { E T31, T37, T8f, T5N, T5P, T8g; T31 = FNMS(T2Z, T30, T2Y); T37 = FNMS(T35, T36, T34); T8f = T31 - T37; T5N = FMA(T2W, T30, T5M); T5P = FMA(T32, T36, T5O); T8g = T5N - T5P; T38 = T31 + T37; T8o = T8g - T8f; T5Q = T5N + T5P; T8h = T8f + T8g; } } { E Tp, T3V, Tu, T3S, Tq, T4Z, T3T, T5p, Tz, T41, TE, T3Y, TA, T51, T3Z; E T5r; { E Tm, T3R, Tw, T3X; { E Tn, To, Ts, Tt; Tn = Ip[WS(rs, 5)]; To = Im[WS(rs, 5)]; Tp = Tn - To; T3V = Tn + To; Ts = Rp[WS(rs, 5)]; Tt = Rm[WS(rs, 5)]; Tu = Ts + Tt; T3S = Ts - Tt; } Tm = W[18]; Tq = Tm * Tp; T4Z = Tm * Tu; T3R = W[20]; T3T = T3R * T3S; T5p = T3R * T3V; { E Tx, Ty, TC, TD; Tx = Ip[WS(rs, 13)]; Ty = Im[WS(rs, 13)]; Tz = Tx - Ty; T41 = Tx + Ty; TC = Rp[WS(rs, 13)]; TD = Rm[WS(rs, 13)]; TE = TC + TD; T3Y = TC - TD; } Tw = W[50]; TA = Tw * Tz; T51 = Tw * TE; T3X = W[52]; T3Z = T3X * T3Y; T5r = T3X * T41; } { E Tv, T50, TF, T52, Tr, TB; Tr = W[19]; Tv = FNMS(Tr, Tu, Tq); T50 = FMA(Tr, Tp, T4Z); TB = W[51]; TF = FNMS(TB, TE, TA); T52 = FMA(TB, Tz, T51); TG = Tv + TF; T7E = Tv - TF; T53 = T50 + T52; T7B = T50 - T52; } { E T3W, T5q, T42, T5s, T3U, T40, T7W, T7X; T3U = W[21]; T3W = FMA(T3U, T3V, T3T); T5q = FNMS(T3U, T3S, T5p); T40 = W[53]; T42 = FMA(T40, T41, T3Z); T5s = FNMS(T40, T3Y, T5r); T43 = T3W + T42; T5t = T5q + T5s; T7W = T5s - T5q; T7X = T3W - T42; T7Y = T7W + T7X; T85 = T7W - T7X; } } { E T1p, T6i, T2H, T68, T5g, T67, T4T, T6h, T4w, T6m, T5G, T6c, T3D, T6n, T63; E T6f; { E TH, T1o, T4H, T4S; TH = Tl + TG; T1o = T12 + T1n; T1p = TH + T1o; T6i = TH - T1o; { E T26, T2G, T54, T5f; T26 = T1K + T25; T2G = T2r + T2F; T2H = T26 + T2G; T68 = T2G - T26; T54 = T4Y + T53; T5f = T59 + T5e; T5g = T54 + T5f; T67 = T5f - T54; } T4H = T4B + T4G; T4S = T4M + T4R; T4T = T4H + T4S; T6h = T4H - T4S; { E T44, T4v, T6b, T5u, T5F, T6a; T44 = T3Q + T43; T4v = T4h + T4u; T6b = T44 - T4v; T5u = T5o + T5t; T5F = T5z + T5E; T6a = T5F - T5u; T4w = T44 + T4v; T6m = T6a - T6b; T5G = T5u + T5F; T6c = T6a + T6b; } { E T39, T3C, T6d, T5R, T62, T6e; T39 = T2V + T38; T3C = T3m + T3B; T6d = T3C - T39; T5R = T5L + T5Q; T62 = T5W + T61; T6e = T62 - T5R; T3D = T39 + T3C; T6n = T6d + T6e; T63 = T5R + T62; T6f = T6d - T6e; } } { E T2I, T4x, T65, T66; T2I = T1p + T2H; T4x = T3D - T4w; Ip[0] = KP500000000 * (T2I + T4x); Im[WS(rs, 15)] = KP500000000 * (T4x - T2I); T65 = T4T + T5g; T66 = T5G + T63; Rm[WS(rs, 15)] = KP500000000 * (T65 - T66); Rp[0] = KP500000000 * (T65 + T66); } { E T5h, T5i, T5j, T64; T5h = T4T - T5g; T5i = T4w + T3D; Rm[WS(rs, 7)] = KP500000000 * (T5h - T5i); Rp[WS(rs, 8)] = KP500000000 * (T5h + T5i); T5j = T2H - T1p; T64 = T5G - T63; Ip[WS(rs, 8)] = KP500000000 * (T5j + T64); Im[WS(rs, 7)] = KP500000000 * (T64 - T5j); } { E T69, T6g, T6p, T6q; T69 = T67 + T68; T6g = T6c + T6f; Ip[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T6g, T69)); Im[WS(rs, 11)] = -(KP500000000 * (FNMS(KP707106781, T6g, T69))); T6p = T6h + T6i; T6q = T6m + T6n; Rm[WS(rs, 11)] = KP500000000 * (FNMS(KP707106781, T6q, T6p)); Rp[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T6q, T6p)); } { E T6j, T6k, T6l, T6o; T6j = T6h - T6i; T6k = T6f - T6c; Rm[WS(rs, 3)] = KP500000000 * (FNMS(KP707106781, T6k, T6j)); Rp[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6k, T6j)); T6l = T68 - T67; T6o = T6m - T6n; Ip[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6o, T6l)); Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP707106781, T6o, T6l))); } } { E T6t, T75, T6T, T7f, T6A, T7g, T6W, T76, T6I, T7k, T70, T7a, T6P, T7l, T71; E T7d; { E T6r, T6s, T6R, T6S; T6r = T4R - T4M; T6s = T2F - T2r; T6t = T6r + T6s; T75 = T6s - T6r; T6R = T4B - T4G; T6S = T1K - T25; T6T = T6R + T6S; T7f = T6R - T6S; } { E T6w, T6U, T6z, T6V; { E T6u, T6v, T6x, T6y; T6u = Tl - TG; T6v = T4Y - T53; T6w = T6u - T6v; T6U = T6v + T6u; T6x = T59 - T5e; T6y = T12 - T1n; T6z = T6x + T6y; T6V = T6x - T6y; } T6A = T6w + T6z; T7g = T6w - T6z; T6W = T6U + T6V; T76 = T6V - T6U; } { E T6E, T78, T6H, T79; { E T6C, T6D, T6F, T6G; T6C = T5t - T5o; T6D = T4u - T4h; T6E = T6C + T6D; T78 = T6C - T6D; T6F = T43 - T3Q; T6G = T5z - T5E; T6H = T6F + T6G; T79 = T6G - T6F; } T6I = FMA(KP414213562, T6H, T6E); T7k = FNMS(KP414213562, T78, T79); T70 = FNMS(KP414213562, T6E, T6H); T7a = FMA(KP414213562, T79, T78); } { E T6L, T7b, T6O, T7c; { E T6J, T6K, T6M, T6N; T6J = T5Q - T5L; T6K = T3B - T3m; T6L = T6J + T6K; T7b = T6K - T6J; T6M = T2V - T38; T6N = T61 - T5W; T6O = T6M + T6N; T7c = T6N - T6M; } T6P = FNMS(KP414213562, T6O, T6L); T7l = FNMS(KP414213562, T7b, T7c); T71 = FMA(KP414213562, T6L, T6O); T7d = FMA(KP414213562, T7c, T7b); } { E T6B, T6Q, T73, T74; T6B = FMA(KP707106781, T6A, T6t); T6Q = T6I + T6P; Ip[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T6Q, T6B)); Im[WS(rs, 13)] = -(KP500000000 * (FNMS(KP923879532, T6Q, T6B))); T73 = FMA(KP707106781, T6W, T6T); T74 = T70 + T71; Rm[WS(rs, 13)] = KP500000000 * (FNMS(KP923879532, T74, T73)); Rp[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T74, T73)); } { E T6X, T6Y, T6Z, T72; T6X = FNMS(KP707106781, T6W, T6T); T6Y = T6P - T6I; Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP923879532, T6Y, T6X)); Rp[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T6Y, T6X)); T6Z = FNMS(KP707106781, T6A, T6t); T72 = T70 - T71; Ip[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T72, T6Z)); Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP923879532, T72, T6Z))); } { E T77, T7e, T7n, T7o; T77 = FNMS(KP707106781, T76, T75); T7e = T7a - T7d; Ip[WS(rs, 14)] = KP500000000 * (FMA(KP923879532, T7e, T77)); Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP923879532, T7e, T77))); T7n = FNMS(KP707106781, T7g, T7f); T7o = T7k + T7l; Rp[WS(rs, 14)] = KP500000000 * (FNMS(KP923879532, T7o, T7n)); Rm[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T7o, T7n)); } { E T7h, T7i, T7j, T7m; T7h = FMA(KP707106781, T7g, T7f); T7i = T7a + T7d; Rm[WS(rs, 9)] = KP500000000 * (FNMS(KP923879532, T7i, T7h)); Rp[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7i, T7h)); T7j = FMA(KP707106781, T76, T75); T7m = T7k - T7l; Ip[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7m, T7j)); Im[WS(rs, 9)] = -(KP500000000 * (FNMS(KP923879532, T7m, T7j))); } } { E T7z, T9T, T8L, T9x, T8z, T9J, T8V, T97, T7O, T8W, T8C, T8M, T9t, T9Y, T9E; E T9O, T88, T90, T8G, T8Q, T9e, T9U, T9A, T9K, T9m, T9Z, T9F, T9R, T8r, T91; E T8H, T8T; { E T7r, T9v, T7y, T9w, T7u, T7x; T7r = T7p - T7q; T9v = T8t - T8u; T7u = T7s - T7t; T7x = T7v + T7w; T7y = T7u + T7x; T9w = T7u - T7x; T7z = FMA(KP707106781, T7y, T7r); T9T = FNMS(KP707106781, T9w, T9v); T8L = FNMS(KP707106781, T7y, T7r); T9x = FMA(KP707106781, T9w, T9v); } { E T8v, T95, T8y, T96, T8w, T8x; T8v = T8t + T8u; T95 = T7q + T7p; T8w = T7t + T7s; T8x = T7v - T7w; T8y = T8w + T8x; T96 = T8x - T8w; T8z = FMA(KP707106781, T8y, T8v); T9J = FNMS(KP707106781, T96, T95); T8V = FNMS(KP707106781, T8y, T8v); T97 = FMA(KP707106781, T96, T95); } { E T7G, T8A, T7N, T8B; { E T7C, T7F, T7J, T7M; T7C = T7A - T7B; T7F = T7D + T7E; T7G = FNMS(KP414213562, T7F, T7C); T8A = FMA(KP414213562, T7C, T7F); T7J = T7H - T7I; T7M = T7K + T7L; T7N = FMA(KP414213562, T7M, T7J); T8B = FNMS(KP414213562, T7J, T7M); } T7O = T7G + T7N; T8W = T7G - T7N; T8C = T8A + T8B; T8M = T8B - T8A; } { E T9p, T9M, T9s, T9N; { E T9n, T9o, T9q, T9r; T9n = T7R - T7Q; T9o = T85 - T84; T9p = FNMS(KP707106781, T9o, T9n); T9M = FMA(KP707106781, T9o, T9n); T9q = T81 - T82; T9r = T7Y - T7V; T9s = FNMS(KP707106781, T9r, T9q); T9N = FMA(KP707106781, T9r, T9q); } T9t = FNMS(KP668178637, T9s, T9p); T9Y = FNMS(KP198912367, T9M, T9N); T9E = FMA(KP668178637, T9p, T9s); T9O = FMA(KP198912367, T9N, T9M); } { E T80, T8O, T87, T8P; { E T7S, T7Z, T83, T86; T7S = T7Q + T7R; T7Z = T7V + T7Y; T80 = FMA(KP707106781, T7Z, T7S); T8O = FNMS(KP707106781, T7Z, T7S); T83 = T81 + T82; T86 = T84 + T85; T87 = FMA(KP707106781, T86, T83); T8P = FNMS(KP707106781, T86, T83); } T88 = FMA(KP198912367, T87, T80); T90 = FMA(KP668178637, T8O, T8P); T8G = FNMS(KP198912367, T80, T87); T8Q = FNMS(KP668178637, T8P, T8O); } { E T9a, T9z, T9d, T9y; { E T98, T99, T9b, T9c; T98 = T7K - T7L; T99 = T7H + T7I; T9a = FMA(KP414213562, T99, T98); T9z = FNMS(KP414213562, T98, T99); T9b = T7D - T7E; T9c = T7A + T7B; T9d = FNMS(KP414213562, T9c, T9b); T9y = FMA(KP414213562, T9b, T9c); } T9e = T9a - T9d; T9U = T9d + T9a; T9A = T9y - T9z; T9K = T9y + T9z; } { E T9i, T9P, T9l, T9Q; { E T9g, T9h, T9j, T9k; T9g = T8a + T89; T9h = T8n - T8o; T9i = FNMS(KP707106781, T9h, T9g); T9P = FMA(KP707106781, T9h, T9g); T9j = T8l - T8k; T9k = T8h - T8e; T9l = FNMS(KP707106781, T9k, T9j); T9Q = FMA(KP707106781, T9k, T9j); } T9m = FNMS(KP668178637, T9l, T9i); T9Z = FNMS(KP198912367, T9P, T9Q); T9F = FMA(KP668178637, T9i, T9l); T9R = FMA(KP198912367, T9Q, T9P); } { E T8j, T8R, T8q, T8S; { E T8b, T8i, T8m, T8p; T8b = T89 - T8a; T8i = T8e + T8h; T8j = FMA(KP707106781, T8i, T8b); T8R = FNMS(KP707106781, T8i, T8b); T8m = T8k + T8l; T8p = T8n + T8o; T8q = FMA(KP707106781, T8p, T8m); T8S = FNMS(KP707106781, T8p, T8m); } T8r = FNMS(KP198912367, T8q, T8j); T91 = FNMS(KP668178637, T8R, T8S); T8H = FMA(KP198912367, T8j, T8q); T8T = FMA(KP668178637, T8S, T8R); } { E T7P, T8s, T8J, T8K; T7P = FMA(KP923879532, T7O, T7z); T8s = T88 + T8r; Ip[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T8s, T7P)); Im[WS(rs, 14)] = -(KP500000000 * (FNMS(KP980785280, T8s, T7P))); T8J = FMA(KP923879532, T8C, T8z); T8K = T8G + T8H; Rm[WS(rs, 14)] = KP500000000 * (FNMS(KP980785280, T8K, T8J)); Rp[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T8K, T8J)); } { E T8D, T8E, T8F, T8I; T8D = FNMS(KP923879532, T8C, T8z); T8E = T8r - T88; Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP980785280, T8E, T8D)); Rp[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T8E, T8D)); T8F = FNMS(KP923879532, T7O, T7z); T8I = T8G - T8H; Ip[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T8I, T8F)); Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP980785280, T8I, T8F))); } { E T8N, T8U, T93, T94; T8N = FNMS(KP923879532, T8M, T8L); T8U = T8Q + T8T; Ip[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T8U, T8N)); Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP831469612, T8U, T8N))); T93 = FNMS(KP923879532, T8W, T8V); T94 = T90 + T91; Rp[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T94, T93)); Rm[WS(rs, 2)] = KP500000000 * (FMA(KP831469612, T94, T93)); } { E T8X, T8Y, T8Z, T92; T8X = FMA(KP923879532, T8W, T8V); T8Y = T8T - T8Q; Rm[WS(rs, 10)] = KP500000000 * (FNMS(KP831469612, T8Y, T8X)); Rp[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T8Y, T8X)); T8Z = FMA(KP923879532, T8M, T8L); T92 = T90 - T91; Ip[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T92, T8Z)); Im[WS(rs, 10)] = -(KP500000000 * (FNMS(KP831469612, T92, T8Z))); } { E T9f, T9u, T9H, T9I; T9f = FMA(KP923879532, T9e, T97); T9u = T9m - T9t; Ip[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, T9u, T9f)); Im[WS(rs, 12)] = -(KP500000000 * (FNMS(KP831469612, T9u, T9f))); T9H = FMA(KP923879532, T9A, T9x); T9I = T9E + T9F; Rm[WS(rs, 12)] = KP500000000 * (FNMS(KP831469612, T9I, T9H)); Rp[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, T9I, T9H)); } { E T9B, T9C, T9D, T9G; T9B = FNMS(KP923879532, T9A, T9x); T9C = T9t + T9m; Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP831469612, T9C, T9B)); Rp[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, T9C, T9B)); T9D = FNMS(KP923879532, T9e, T97); T9G = T9E - T9F; Ip[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, T9G, T9D)); Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP831469612, T9G, T9D))); } { E T9L, T9S, Ta1, Ta2; T9L = FMA(KP923879532, T9K, T9J); T9S = T9O - T9R; Ip[WS(rs, 15)] = KP500000000 * (FMA(KP980785280, T9S, T9L)); Im[0] = -(KP500000000 * (FNMS(KP980785280, T9S, T9L))); Ta1 = FMA(KP923879532, T9U, T9T); Ta2 = T9Y + T9Z; Rp[WS(rs, 15)] = KP500000000 * (FNMS(KP980785280, Ta2, Ta1)); Rm[0] = KP500000000 * (FMA(KP980785280, Ta2, Ta1)); } { E T9V, T9W, T9X, Ta0; T9V = FNMS(KP923879532, T9U, T9T); T9W = T9O + T9R; Rm[WS(rs, 8)] = KP500000000 * (FNMS(KP980785280, T9W, T9V)); Rp[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, T9W, T9V)); T9X = FNMS(KP923879532, T9K, T9J); Ta0 = T9Y - T9Z; Ip[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, Ta0, T9X)); Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP980785280, Ta0, T9X))); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 32}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 32, "hc2cfdft_32", twinstr, &GENUS, {300, 126, 198, 0} }; void X(codelet_hc2cfdft_32) (planner *p) { X(khc2c_register) (p, hc2cfdft_32, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 32 -dit -name hc2cfdft_32 -include rdft/scalar/hc2cf.h */ /* * This function contains 498 FP additions, 228 FP multiplications, * (or, 404 additions, 134 multiplications, 94 fused multiply/add), * 106 stack variables, 9 constants, and 128 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP277785116, +0.277785116509801112371415406974266437187468595); DK(KP415734806, +0.415734806151272618539394188808952878369280406); DK(KP097545161, +0.097545161008064133924142434238511120463845809); DK(KP490392640, +0.490392640201615224563091118067119518486966865); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP191341716, +0.191341716182544885864229992015199433380672281); DK(KP461939766, +0.461939766255643378064091594698394143411208313); DK(KP353553390, +0.353553390593273762200422181052424519642417969); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) { E T2S, T5K, T52, T5N, T7p, T8r, T7i, T8o, T2q, T7t, T45, T6L, T2d, T7u, T48; E T6M, T1A, T4c, T4f, T1T, T3f, T5M, T7e, T7l, T6J, T7x, T4V, T5J, T7b, T7k; E T6G, T7w, Tj, TC, T5r, T4k, T4n, T5s, T3D, T5C, T6V, T72, T4G, T5F, T6u; E T86, T6S, T71, T6r, T85, TW, T1f, T5v, T4r, T4u, T5u, T40, T5G, T76, T8k; E T4N, T5D, T6B, T89, T6Z, T8h, T6y, T88; { E T1Y, T22, T2L, T4W, T2p, T43, T2A, T50, T27, T2b, T2Q, T4X, T2h, T2l, T2F; E T4Z; { E T1W, T1X, T2K, T20, T21, T2I, T2H, T2J; T1W = Ip[WS(rs, 4)]; T1X = Im[WS(rs, 4)]; T2K = T1W + T1X; T20 = Rp[WS(rs, 4)]; T21 = Rm[WS(rs, 4)]; T2I = T20 - T21; T1Y = T1W - T1X; T22 = T20 + T21; T2H = W[16]; T2J = W[17]; T2L = FMA(T2H, T2I, T2J * T2K); T4W = FNMS(T2J, T2I, T2H * T2K); } { E T2n, T2o, T2z, T2v, T2w, T2x, T2u, T2y; T2n = Ip[0]; T2o = Im[0]; T2z = T2n + T2o; T2v = Rm[0]; T2w = Rp[0]; T2x = T2v - T2w; T2p = T2n - T2o; T43 = T2w + T2v; T2u = W[0]; T2y = W[1]; T2A = FNMS(T2y, T2z, T2u * T2x); T50 = FMA(T2y, T2x, T2u * T2z); } { E T25, T26, T2P, T29, T2a, T2N, T2M, T2O; T25 = Ip[WS(rs, 12)]; T26 = Im[WS(rs, 12)]; T2P = T25 + T26; T29 = Rp[WS(rs, 12)]; T2a = Rm[WS(rs, 12)]; T2N = T29 - T2a; T27 = T25 - T26; T2b = T29 + T2a; T2M = W[48]; T2O = W[49]; T2Q = FMA(T2M, T2N, T2O * T2P); T4X = FNMS(T2O, T2N, T2M * T2P); } { E T2f, T2g, T2E, T2j, T2k, T2C, T2B, T2D; T2f = Ip[WS(rs, 8)]; T2g = Im[WS(rs, 8)]; T2E = T2f + T2g; T2j = Rp[WS(rs, 8)]; T2k = Rm[WS(rs, 8)]; T2C = T2j - T2k; T2h = T2f - T2g; T2l = T2j + T2k; T2B = W[32]; T2D = W[33]; T2F = FMA(T2B, T2C, T2D * T2E); T4Z = FNMS(T2D, T2C, T2B * T2E); } { E T2G, T2R, T7g, T7h; T2G = T2A - T2F; T2R = T2L + T2Q; T2S = T2G - T2R; T5K = T2R + T2G; { E T4Y, T51, T7n, T7o; T4Y = T4W + T4X; T51 = T4Z + T50; T52 = T4Y + T51; T5N = T51 - T4Y; T7n = T2Q - T2L; T7o = T50 - T4Z; T7p = T7n + T7o; T8r = T7o - T7n; } T7g = T2F + T2A; T7h = T4W - T4X; T7i = T7g - T7h; T8o = T7h + T7g; { E T2m, T44, T2e, T2i; T2e = W[30]; T2i = W[31]; T2m = FNMS(T2i, T2l, T2e * T2h); T44 = FMA(T2e, T2l, T2i * T2h); T2q = T2m + T2p; T7t = T43 - T44; T45 = T43 + T44; T6L = T2p - T2m; } { E T23, T46, T2c, T47; { E T1V, T1Z, T24, T28; T1V = W[14]; T1Z = W[15]; T23 = FNMS(T1Z, T22, T1V * T1Y); T46 = FMA(T1V, T22, T1Z * T1Y); T24 = W[46]; T28 = W[47]; T2c = FNMS(T28, T2b, T24 * T27); T47 = FMA(T24, T2b, T28 * T27); } T2d = T23 + T2c; T7u = T23 - T2c; T48 = T46 + T47; T6M = T46 - T47; } } } { E T1q, T4a, T2X, T4P, T1S, T4e, T3d, T4T, T1z, T4b, T32, T4Q, T1J, T4d, T38; E T4S; { E T1l, T2W, T1p, T2U; { E T1j, T1k, T1n, T1o; T1j = Ip[WS(rs, 2)]; T1k = Im[WS(rs, 2)]; T1l = T1j - T1k; T2W = T1j + T1k; T1n = Rp[WS(rs, 2)]; T1o = Rm[WS(rs, 2)]; T1p = T1n + T1o; T2U = T1n - T1o; } { E T1i, T1m, T2T, T2V; T1i = W[6]; T1m = W[7]; T1q = FNMS(T1m, T1p, T1i * T1l); T4a = FMA(T1i, T1p, T1m * T1l); T2T = W[8]; T2V = W[9]; T2X = FMA(T2T, T2U, T2V * T2W); T4P = FNMS(T2V, T2U, T2T * T2W); } } { E T1N, T3c, T1R, T3a; { E T1L, T1M, T1P, T1Q; T1L = Ip[WS(rs, 6)]; T1M = Im[WS(rs, 6)]; T1N = T1L - T1M; T3c = T1L + T1M; T1P = Rp[WS(rs, 6)]; T1Q = Rm[WS(rs, 6)]; T1R = T1P + T1Q; T3a = T1P - T1Q; } { E T1K, T1O, T39, T3b; T1K = W[22]; T1O = W[23]; T1S = FNMS(T1O, T1R, T1K * T1N); T4e = FMA(T1K, T1R, T1O * T1N); T39 = W[24]; T3b = W[25]; T3d = FMA(T39, T3a, T3b * T3c); T4T = FNMS(T3b, T3a, T39 * T3c); } } { E T1u, T31, T1y, T2Z; { E T1s, T1t, T1w, T1x; T1s = Ip[WS(rs, 10)]; T1t = Im[WS(rs, 10)]; T1u = T1s - T1t; T31 = T1s + T1t; T1w = Rp[WS(rs, 10)]; T1x = Rm[WS(rs, 10)]; T1y = T1w + T1x; T2Z = T1w - T1x; } { E T1r, T1v, T2Y, T30; T1r = W[38]; T1v = W[39]; T1z = FNMS(T1v, T1y, T1r * T1u); T4b = FMA(T1r, T1y, T1v * T1u); T2Y = W[40]; T30 = W[41]; T32 = FMA(T2Y, T2Z, T30 * T31); T4Q = FNMS(T30, T2Z, T2Y * T31); } } { E T1E, T37, T1I, T35; { E T1C, T1D, T1G, T1H; T1C = Ip[WS(rs, 14)]; T1D = Im[WS(rs, 14)]; T1E = T1C - T1D; T37 = T1C + T1D; T1G = Rp[WS(rs, 14)]; T1H = Rm[WS(rs, 14)]; T1I = T1G + T1H; T35 = T1G - T1H; } { E T1B, T1F, T34, T36; T1B = W[54]; T1F = W[55]; T1J = FNMS(T1F, T1I, T1B * T1E); T4d = FMA(T1B, T1I, T1F * T1E); T34 = W[56]; T36 = W[57]; T38 = FMA(T34, T35, T36 * T37); T4S = FNMS(T36, T35, T34 * T37); } } { E T33, T3e, T4R, T4U; T1A = T1q + T1z; T4c = T4a + T4b; T4f = T4d + T4e; T1T = T1J + T1S; T33 = T2X + T32; T3e = T38 + T3d; T3f = T33 + T3e; T5M = T3e - T33; { E T7c, T7d, T6H, T6I; T7c = T4S - T4T; T7d = T3d - T38; T7e = T7c + T7d; T7l = T7c - T7d; T6H = T4d - T4e; T6I = T1J - T1S; T6J = T6H + T6I; T7x = T6H - T6I; } T4R = T4P + T4Q; T4U = T4S + T4T; T4V = T4R + T4U; T5J = T4U - T4R; { E T79, T7a, T6E, T6F; T79 = T32 - T2X; T7a = T4P - T4Q; T7b = T79 - T7a; T7k = T7a + T79; T6E = T1q - T1z; T6F = T4a - T4b; T6G = T6E - T6F; T7w = T6F + T6E; } } } { E T9, T4i, T3l, T4A, TB, T4m, T3B, T4E, Ti, T4j, T3q, T4B, Ts, T4l, T3w; E T4D; { E T4, T3k, T8, T3i; { E T2, T3, T6, T7; T2 = Ip[WS(rs, 1)]; T3 = Im[WS(rs, 1)]; T4 = T2 - T3; T3k = T2 + T3; T6 = Rp[WS(rs, 1)]; T7 = Rm[WS(rs, 1)]; T8 = T6 + T7; T3i = T6 - T7; } { E T1, T5, T3h, T3j; T1 = W[2]; T5 = W[3]; T9 = FNMS(T5, T8, T1 * T4); T4i = FMA(T1, T8, T5 * T4); T3h = W[4]; T3j = W[5]; T3l = FMA(T3h, T3i, T3j * T3k); T4A = FNMS(T3j, T3i, T3h * T3k); } } { E Tw, T3A, TA, T3y; { E Tu, Tv, Ty, Tz; Tu = Ip[WS(rs, 13)]; Tv = Im[WS(rs, 13)]; Tw = Tu - Tv; T3A = Tu + Tv; Ty = Rp[WS(rs, 13)]; Tz = Rm[WS(rs, 13)]; TA = Ty + Tz; T3y = Ty - Tz; } { E Tt, Tx, T3x, T3z; Tt = W[50]; Tx = W[51]; TB = FNMS(Tx, TA, Tt * Tw); T4m = FMA(Tt, TA, Tx * Tw); T3x = W[52]; T3z = W[53]; T3B = FMA(T3x, T3y, T3z * T3A); T4E = FNMS(T3z, T3y, T3x * T3A); } } { E Td, T3p, Th, T3n; { E Tb, Tc, Tf, Tg; Tb = Ip[WS(rs, 9)]; Tc = Im[WS(rs, 9)]; Td = Tb - Tc; T3p = Tb + Tc; Tf = Rp[WS(rs, 9)]; Tg = Rm[WS(rs, 9)]; Th = Tf + Tg; T3n = Tf - Tg; } { E Ta, Te, T3m, T3o; Ta = W[34]; Te = W[35]; Ti = FNMS(Te, Th, Ta * Td); T4j = FMA(Ta, Th, Te * Td); T3m = W[36]; T3o = W[37]; T3q = FMA(T3m, T3n, T3o * T3p); T4B = FNMS(T3o, T3n, T3m * T3p); } } { E Tn, T3v, Tr, T3t; { E Tl, Tm, Tp, Tq; Tl = Ip[WS(rs, 5)]; Tm = Im[WS(rs, 5)]; Tn = Tl - Tm; T3v = Tl + Tm; Tp = Rp[WS(rs, 5)]; Tq = Rm[WS(rs, 5)]; Tr = Tp + Tq; T3t = Tp - Tq; } { E Tk, To, T3s, T3u; Tk = W[18]; To = W[19]; Ts = FNMS(To, Tr, Tk * Tn); T4l = FMA(Tk, Tr, To * Tn); T3s = W[20]; T3u = W[21]; T3w = FMA(T3s, T3t, T3u * T3v); T4D = FNMS(T3u, T3t, T3s * T3v); } } Tj = T9 + Ti; TC = Ts + TB; T5r = Tj - TC; T4k = T4i + T4j; T4n = T4l + T4m; T5s = T4k - T4n; { E T3r, T3C, T6T, T6U; T3r = T3l + T3q; T3C = T3w + T3B; T3D = T3r + T3C; T5C = T3C - T3r; T6T = T4E - T4D; T6U = T3w - T3B; T6V = T6T + T6U; T72 = T6T - T6U; } { E T4C, T4F, T6s, T6t; T4C = T4A + T4B; T4F = T4D + T4E; T4G = T4C + T4F; T5F = T4F - T4C; T6s = T4i - T4j; T6t = Ts - TB; T6u = T6s + T6t; T86 = T6s - T6t; } { E T6Q, T6R, T6p, T6q; T6Q = T3q - T3l; T6R = T4A - T4B; T6S = T6Q - T6R; T71 = T6R + T6Q; T6p = T9 - Ti; T6q = T4l - T4m; T6r = T6p - T6q; T85 = T6p + T6q; } } { E TM, T4p, T3I, T4H, T1e, T4t, T3Y, T4L, TV, T4q, T3N, T4I, T15, T4s, T3T; E T4K; { E TH, T3H, TL, T3F; { E TF, TG, TJ, TK; TF = Ip[WS(rs, 15)]; TG = Im[WS(rs, 15)]; TH = TF - TG; T3H = TF + TG; TJ = Rp[WS(rs, 15)]; TK = Rm[WS(rs, 15)]; TL = TJ + TK; T3F = TJ - TK; } { E TE, TI, T3E, T3G; TE = W[58]; TI = W[59]; TM = FNMS(TI, TL, TE * TH); T4p = FMA(TE, TL, TI * TH); T3E = W[60]; T3G = W[61]; T3I = FMA(T3E, T3F, T3G * T3H); T4H = FNMS(T3G, T3F, T3E * T3H); } } { E T19, T3X, T1d, T3V; { E T17, T18, T1b, T1c; T17 = Ip[WS(rs, 11)]; T18 = Im[WS(rs, 11)]; T19 = T17 - T18; T3X = T17 + T18; T1b = Rp[WS(rs, 11)]; T1c = Rm[WS(rs, 11)]; T1d = T1b + T1c; T3V = T1b - T1c; } { E T16, T1a, T3U, T3W; T16 = W[42]; T1a = W[43]; T1e = FNMS(T1a, T1d, T16 * T19); T4t = FMA(T16, T1d, T1a * T19); T3U = W[44]; T3W = W[45]; T3Y = FMA(T3U, T3V, T3W * T3X); T4L = FNMS(T3W, T3V, T3U * T3X); } } { E TQ, T3M, TU, T3K; { E TO, TP, TS, TT; TO = Ip[WS(rs, 7)]; TP = Im[WS(rs, 7)]; TQ = TO - TP; T3M = TO + TP; TS = Rp[WS(rs, 7)]; TT = Rm[WS(rs, 7)]; TU = TS + TT; T3K = TS - TT; } { E TN, TR, T3J, T3L; TN = W[26]; TR = W[27]; TV = FNMS(TR, TU, TN * TQ); T4q = FMA(TN, TU, TR * TQ); T3J = W[28]; T3L = W[29]; T3N = FMA(T3J, T3K, T3L * T3M); T4I = FNMS(T3L, T3K, T3J * T3M); } } { E T10, T3S, T14, T3Q; { E TY, TZ, T12, T13; TY = Ip[WS(rs, 3)]; TZ = Im[WS(rs, 3)]; T10 = TY - TZ; T3S = TY + TZ; T12 = Rp[WS(rs, 3)]; T13 = Rm[WS(rs, 3)]; T14 = T12 + T13; T3Q = T12 - T13; } { E TX, T11, T3P, T3R; TX = W[10]; T11 = W[11]; T15 = FNMS(T11, T14, TX * T10); T4s = FMA(TX, T14, T11 * T10); T3P = W[12]; T3R = W[13]; T3T = FMA(T3P, T3Q, T3R * T3S); T4K = FNMS(T3R, T3Q, T3P * T3S); } } TW = TM + TV; T1f = T15 + T1e; T5v = TW - T1f; T4r = T4p + T4q; T4u = T4s + T4t; T5u = T4r - T4u; { E T3O, T3Z, T74, T75; T3O = T3I + T3N; T3Z = T3T + T3Y; T40 = T3O + T3Z; T5G = T3Z - T3O; T74 = T4H - T4I; T75 = T3Y - T3T; T76 = T74 + T75; T8k = T74 - T75; } { E T4J, T4M, T6z, T6A; T4J = T4H + T4I; T4M = T4K + T4L; T4N = T4J + T4M; T5D = T4J - T4M; T6z = T4p - T4q; T6A = T15 - T1e; T6B = T6z + T6A; T89 = T6z - T6A; } { E T6X, T6Y, T6w, T6x; T6X = T3N - T3I; T6Y = T4K - T4L; T6Z = T6X - T6Y; T8h = T6X + T6Y; T6w = TM - TV; T6x = T4s - T4t; T6y = T6w - T6x; T88 = T6w + T6x; } } { E T1h, T5i, T5c, T5m, T5f, T5n, T2s, T58, T42, T4y, T4w, T57, T54, T56, T4h; E T5h; { E TD, T1g, T5a, T5b; TD = Tj + TC; T1g = TW + T1f; T1h = TD + T1g; T5i = TD - T1g; T5a = T4N - T4G; T5b = T3D - T40; T5c = T5a + T5b; T5m = T5a - T5b; } { E T5d, T5e, T1U, T2r; T5d = T3f + T2S; T5e = T52 - T4V; T5f = T5d - T5e; T5n = T5d + T5e; T1U = T1A + T1T; T2r = T2d + T2q; T2s = T1U + T2r; T58 = T2r - T1U; } { E T3g, T41, T4o, T4v; T3g = T2S - T3f; T41 = T3D + T40; T42 = T3g - T41; T4y = T41 + T3g; T4o = T4k + T4n; T4v = T4r + T4u; T4w = T4o + T4v; T57 = T4v - T4o; } { E T4O, T53, T49, T4g; T4O = T4G + T4N; T53 = T4V + T52; T54 = T4O - T53; T56 = T4O + T53; T49 = T45 + T48; T4g = T4c + T4f; T4h = T49 + T4g; T5h = T49 - T4g; } { E T2t, T55, T4x, T4z; T2t = T1h + T2s; Ip[0] = KP500000000 * (T2t + T42); Im[WS(rs, 15)] = KP500000000 * (T42 - T2t); T55 = T4h + T4w; Rm[WS(rs, 15)] = KP500000000 * (T55 - T56); Rp[0] = KP500000000 * (T55 + T56); T4x = T4h - T4w; Rm[WS(rs, 7)] = KP500000000 * (T4x - T4y); Rp[WS(rs, 8)] = KP500000000 * (T4x + T4y); T4z = T2s - T1h; Ip[WS(rs, 8)] = KP500000000 * (T4z + T54); Im[WS(rs, 7)] = KP500000000 * (T54 - T4z); } { E T59, T5g, T5p, T5q; T59 = KP500000000 * (T57 + T58); T5g = KP353553390 * (T5c + T5f); Ip[WS(rs, 4)] = T59 + T5g; Im[WS(rs, 11)] = T5g - T59; T5p = KP500000000 * (T5h + T5i); T5q = KP353553390 * (T5m + T5n); Rm[WS(rs, 11)] = T5p - T5q; Rp[WS(rs, 4)] = T5p + T5q; } { E T5j, T5k, T5l, T5o; T5j = KP500000000 * (T5h - T5i); T5k = KP353553390 * (T5f - T5c); Rm[WS(rs, 3)] = T5j - T5k; Rp[WS(rs, 12)] = T5j + T5k; T5l = KP500000000 * (T58 - T57); T5o = KP353553390 * (T5m - T5n); Ip[WS(rs, 12)] = T5l + T5o; Im[WS(rs, 3)] = T5o - T5l; } } { E T5x, T6g, T6a, T6k, T6d, T6l, T5A, T66, T5I, T60, T5T, T6f, T5W, T65, T5P; E T61; { E T5t, T5w, T68, T69; T5t = T5r - T5s; T5w = T5u + T5v; T5x = KP353553390 * (T5t + T5w); T6g = KP353553390 * (T5t - T5w); T68 = T5D - T5C; T69 = T5G - T5F; T6a = FMA(KP461939766, T68, KP191341716 * T69); T6k = FNMS(KP461939766, T69, KP191341716 * T68); } { E T6b, T6c, T5y, T5z; T6b = T5K - T5J; T6c = T5N - T5M; T6d = FNMS(KP461939766, T6c, KP191341716 * T6b); T6l = FMA(KP461939766, T6b, KP191341716 * T6c); T5y = T4f - T4c; T5z = T2q - T2d; T5A = KP500000000 * (T5y + T5z); T66 = KP500000000 * (T5z - T5y); } { E T5E, T5H, T5R, T5S; T5E = T5C + T5D; T5H = T5F + T5G; T5I = FMA(KP191341716, T5E, KP461939766 * T5H); T60 = FNMS(KP191341716, T5H, KP461939766 * T5E); T5R = T45 - T48; T5S = T1A - T1T; T5T = KP500000000 * (T5R + T5S); T6f = KP500000000 * (T5R - T5S); } { E T5U, T5V, T5L, T5O; T5U = T5s + T5r; T5V = T5u - T5v; T5W = KP353553390 * (T5U + T5V); T65 = KP353553390 * (T5V - T5U); T5L = T5J + T5K; T5O = T5M + T5N; T5P = FNMS(KP191341716, T5O, KP461939766 * T5L); T61 = FMA(KP191341716, T5L, KP461939766 * T5O); } { E T5B, T5Q, T63, T64; T5B = T5x + T5A; T5Q = T5I + T5P; Ip[WS(rs, 2)] = T5B + T5Q; Im[WS(rs, 13)] = T5Q - T5B; T63 = T5T + T5W; T64 = T60 + T61; Rm[WS(rs, 13)] = T63 - T64; Rp[WS(rs, 2)] = T63 + T64; } { E T5X, T5Y, T5Z, T62; T5X = T5T - T5W; T5Y = T5P - T5I; Rm[WS(rs, 5)] = T5X - T5Y; Rp[WS(rs, 10)] = T5X + T5Y; T5Z = T5A - T5x; T62 = T60 - T61; Ip[WS(rs, 10)] = T5Z + T62; Im[WS(rs, 5)] = T62 - T5Z; } { E T67, T6e, T6n, T6o; T67 = T65 + T66; T6e = T6a + T6d; Ip[WS(rs, 6)] = T67 + T6e; Im[WS(rs, 9)] = T6e - T67; T6n = T6f + T6g; T6o = T6k + T6l; Rm[WS(rs, 9)] = T6n - T6o; Rp[WS(rs, 6)] = T6n + T6o; } { E T6h, T6i, T6j, T6m; T6h = T6f - T6g; T6i = T6d - T6a; Rm[WS(rs, 1)] = T6h - T6i; Rp[WS(rs, 14)] = T6h + T6i; T6j = T66 - T65; T6m = T6k - T6l; Ip[WS(rs, 14)] = T6j + T6m; Im[WS(rs, 1)] = T6m - T6j; } } { E T6D, T7W, T6O, T7M, T7C, T7L, T7z, T7V, T7r, T81, T7H, T7T, T78, T80, T7G; E T7Q; { E T6v, T6C, T7v, T7y; T6v = FNMS(KP191341716, T6u, KP461939766 * T6r); T6C = FMA(KP461939766, T6y, KP191341716 * T6B); T6D = T6v + T6C; T7W = T6v - T6C; { E T6K, T6N, T7A, T7B; T6K = KP353553390 * (T6G + T6J); T6N = KP500000000 * (T6L - T6M); T6O = T6K + T6N; T7M = T6N - T6K; T7A = FMA(KP191341716, T6r, KP461939766 * T6u); T7B = FNMS(KP191341716, T6y, KP461939766 * T6B); T7C = T7A + T7B; T7L = T7B - T7A; } T7v = KP500000000 * (T7t + T7u); T7y = KP353553390 * (T7w + T7x); T7z = T7v + T7y; T7V = T7v - T7y; { E T7j, T7R, T7q, T7S, T7f, T7m; T7f = KP707106781 * (T7b + T7e); T7j = T7f + T7i; T7R = T7i - T7f; T7m = KP707106781 * (T7k + T7l); T7q = T7m + T7p; T7S = T7p - T7m; T7r = FNMS(KP097545161, T7q, KP490392640 * T7j); T81 = FMA(KP415734806, T7R, KP277785116 * T7S); T7H = FMA(KP097545161, T7j, KP490392640 * T7q); T7T = FNMS(KP415734806, T7S, KP277785116 * T7R); } { E T70, T7O, T77, T7P, T6W, T73; T6W = KP707106781 * (T6S + T6V); T70 = T6W + T6Z; T7O = T6Z - T6W; T73 = KP707106781 * (T71 + T72); T77 = T73 + T76; T7P = T76 - T73; T78 = FMA(KP490392640, T70, KP097545161 * T77); T80 = FNMS(KP415734806, T7O, KP277785116 * T7P); T7G = FNMS(KP097545161, T70, KP490392640 * T77); T7Q = FMA(KP277785116, T7O, KP415734806 * T7P); } } { E T6P, T7s, T7J, T7K; T6P = T6D + T6O; T7s = T78 + T7r; Ip[WS(rs, 1)] = T6P + T7s; Im[WS(rs, 14)] = T7s - T6P; T7J = T7z + T7C; T7K = T7G + T7H; Rm[WS(rs, 14)] = T7J - T7K; Rp[WS(rs, 1)] = T7J + T7K; } { E T7D, T7E, T7F, T7I; T7D = T7z - T7C; T7E = T7r - T78; Rm[WS(rs, 6)] = T7D - T7E; Rp[WS(rs, 9)] = T7D + T7E; T7F = T6O - T6D; T7I = T7G - T7H; Ip[WS(rs, 9)] = T7F + T7I; Im[WS(rs, 6)] = T7I - T7F; } { E T7N, T7U, T83, T84; T7N = T7L + T7M; T7U = T7Q + T7T; Ip[WS(rs, 5)] = T7N + T7U; Im[WS(rs, 10)] = T7U - T7N; T83 = T7V + T7W; T84 = T80 + T81; Rm[WS(rs, 10)] = T83 - T84; Rp[WS(rs, 5)] = T83 + T84; } { E T7X, T7Y, T7Z, T82; T7X = T7V - T7W; T7Y = T7T - T7Q; Rm[WS(rs, 2)] = T7X - T7Y; Rp[WS(rs, 13)] = T7X + T7Y; T7Z = T7M - T7L; T82 = T80 - T81; Ip[WS(rs, 13)] = T7Z + T82; Im[WS(rs, 2)] = T82 - T7Z; } } { E T8b, T8U, T8e, T8K, T8A, T8J, T8x, T8T, T8t, T8Z, T8F, T8R, T8m, T8Y, T8E; E T8O; { E T87, T8a, T8v, T8w; T87 = FNMS(KP461939766, T86, KP191341716 * T85); T8a = FMA(KP191341716, T88, KP461939766 * T89); T8b = T87 + T8a; T8U = T87 - T8a; { E T8c, T8d, T8y, T8z; T8c = KP353553390 * (T7x - T7w); T8d = KP500000000 * (T6M + T6L); T8e = T8c + T8d; T8K = T8d - T8c; T8y = FMA(KP461939766, T85, KP191341716 * T86); T8z = FNMS(KP461939766, T88, KP191341716 * T89); T8A = T8y + T8z; T8J = T8z - T8y; } T8v = KP500000000 * (T7t - T7u); T8w = KP353553390 * (T6G - T6J); T8x = T8v + T8w; T8T = T8v - T8w; { E T8p, T8P, T8s, T8Q, T8n, T8q; T8n = KP707106781 * (T7l - T7k); T8p = T8n + T8o; T8P = T8o - T8n; T8q = KP707106781 * (T7b - T7e); T8s = T8q + T8r; T8Q = T8r - T8q; T8t = FNMS(KP277785116, T8s, KP415734806 * T8p); T8Z = FMA(KP490392640, T8P, KP097545161 * T8Q); T8F = FMA(KP277785116, T8p, KP415734806 * T8s); T8R = FNMS(KP490392640, T8Q, KP097545161 * T8P); } { E T8i, T8M, T8l, T8N, T8g, T8j; T8g = KP707106781 * (T72 - T71); T8i = T8g + T8h; T8M = T8h - T8g; T8j = KP707106781 * (T6S - T6V); T8l = T8j + T8k; T8N = T8k - T8j; T8m = FMA(KP415734806, T8i, KP277785116 * T8l); T8Y = FNMS(KP490392640, T8M, KP097545161 * T8N); T8E = FNMS(KP277785116, T8i, KP415734806 * T8l); T8O = FMA(KP097545161, T8M, KP490392640 * T8N); } } { E T8f, T8u, T8H, T8I; T8f = T8b + T8e; T8u = T8m + T8t; Ip[WS(rs, 3)] = T8f + T8u; Im[WS(rs, 12)] = T8u - T8f; T8H = T8x + T8A; T8I = T8E + T8F; Rm[WS(rs, 12)] = T8H - T8I; Rp[WS(rs, 3)] = T8H + T8I; } { E T8B, T8C, T8D, T8G; T8B = T8x - T8A; T8C = T8t - T8m; Rm[WS(rs, 4)] = T8B - T8C; Rp[WS(rs, 11)] = T8B + T8C; T8D = T8e - T8b; T8G = T8E - T8F; Ip[WS(rs, 11)] = T8D + T8G; Im[WS(rs, 4)] = T8G - T8D; } { E T8L, T8S, T91, T92; T8L = T8J + T8K; T8S = T8O + T8R; Ip[WS(rs, 7)] = T8L + T8S; Im[WS(rs, 8)] = T8S - T8L; T91 = T8T + T8U; T92 = T8Y + T8Z; Rm[WS(rs, 8)] = T91 - T92; Rp[WS(rs, 7)] = T91 + T92; } { E T8V, T8W, T8X, T90; T8V = T8T - T8U; T8W = T8R - T8O; Rm[0] = T8V - T8W; Rp[WS(rs, 15)] = T8V + T8W; T8X = T8K - T8J; T90 = T8Y - T8Z; Ip[WS(rs, 15)] = T8X + T90; Im[0] = T90 - T8X; } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 32}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 32, "hc2cfdft_32", twinstr, &GENUS, {404, 134, 94, 0} }; void X(codelet_hc2cfdft_32) (planner *p) { X(khc2c_register) (p, hc2cfdft_32, &desc, HC2C_VIA_DFT); } #endif