/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:10 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 4 -dit -name hc2cfdft_4 -include rdft/scalar/hc2cf.h */ /* * This function contains 30 FP additions, 20 FP multiplications, * (or, 24 additions, 14 multiplications, 6 fused multiply/add), * 31 stack variables, 1 constants, and 16 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { E Td, Tl, Tu, Tk, TC, Tf, Tj, T4, Tr, T9, To, T5, Tv, Tp, TA; E Tb, Tc; Tb = Ip[0]; Tc = Im[0]; Td = Tb - Tc; Tl = Tb + Tc; { E Tg, Th, Ti, T1, Tn; Tg = Rm[0]; Th = Rp[0]; Ti = Tg - Th; Tu = Th + Tg; Tk = W[1]; TC = Tk * Ti; Tf = W[0]; Tj = Tf * Ti; { E T2, T3, T7, T8; T2 = Ip[WS(rs, 1)]; T3 = Im[WS(rs, 1)]; T4 = T2 - T3; Tr = T2 + T3; T7 = Rp[WS(rs, 1)]; T8 = Rm[WS(rs, 1)]; T9 = T7 + T8; To = T7 - T8; } T1 = W[2]; T5 = T1 * T4; Tv = T1 * T9; Tn = W[4]; Tp = Tn * To; TA = Tn * Tr; } { E Tm, TD, Ta, Tw, Ts, TB, T6, Tq; Tm = FNMS(Tk, Tl, Tj); TD = FMA(Tf, Tl, TC); T6 = W[3]; Ta = FNMS(T6, T9, T5); Tw = FMA(T6, T4, Tv); Tq = W[5]; Ts = FMA(Tq, Tr, Tp); TB = FNMS(Tq, To, TA); { E Te, Tt, TF, TG; Te = Ta + Td; Tt = Tm - Ts; Ip[0] = KP500000000 * (Te + Tt); Im[WS(rs, 1)] = KP500000000 * (Tt - Te); TF = Tu + Tw; TG = TB + TD; Rm[WS(rs, 1)] = KP500000000 * (TF - TG); Rp[0] = KP500000000 * (TF + TG); } { E Tx, Ty, Tz, TE; Tx = Tu - Tw; Ty = Ts + Tm; Rm[0] = KP500000000 * (Tx - Ty); Rp[WS(rs, 1)] = KP500000000 * (Tx + Ty); Tz = Td - Ta; TE = TB - TD; Ip[WS(rs, 1)] = KP500000000 * (Tz + TE); Im[0] = KP500000000 * (TE - Tz); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 4}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 4, "hc2cfdft_4", twinstr, &GENUS, {24, 14, 6, 0} }; void X(codelet_hc2cfdft_4) (planner *p) { X(khc2c_register) (p, hc2cfdft_4, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 4 -dit -name hc2cfdft_4 -include rdft/scalar/hc2cf.h */ /* * This function contains 30 FP additions, 20 FP multiplications, * (or, 24 additions, 14 multiplications, 6 fused multiply/add), * 18 stack variables, 1 constants, and 16 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { E Tc, Tr, Tk, Tx, T9, Ts, Tp, Tw; { E Ta, Tb, Tj, Tf, Tg, Th, Te, Ti; Ta = Ip[0]; Tb = Im[0]; Tj = Ta + Tb; Tf = Rm[0]; Tg = Rp[0]; Th = Tf - Tg; Tc = Ta - Tb; Tr = Tg + Tf; Te = W[0]; Ti = W[1]; Tk = FNMS(Ti, Tj, Te * Th); Tx = FMA(Ti, Th, Te * Tj); } { E T4, To, T8, Tm; { E T2, T3, T6, T7; T2 = Ip[WS(rs, 1)]; T3 = Im[WS(rs, 1)]; T4 = T2 - T3; To = T2 + T3; T6 = Rp[WS(rs, 1)]; T7 = Rm[WS(rs, 1)]; T8 = T6 + T7; Tm = T6 - T7; } { E T1, T5, Tl, Tn; T1 = W[2]; T5 = W[3]; T9 = FNMS(T5, T8, T1 * T4); Ts = FMA(T1, T8, T5 * T4); Tl = W[4]; Tn = W[5]; Tp = FMA(Tl, Tm, Tn * To); Tw = FNMS(Tn, Tm, Tl * To); } } { E Td, Tq, Tz, TA; Td = T9 + Tc; Tq = Tk - Tp; Ip[0] = KP500000000 * (Td + Tq); Im[WS(rs, 1)] = KP500000000 * (Tq - Td); Tz = Tr + Ts; TA = Tw + Tx; Rm[WS(rs, 1)] = KP500000000 * (Tz - TA); Rp[0] = KP500000000 * (Tz + TA); } { E Tt, Tu, Tv, Ty; Tt = Tr - Ts; Tu = Tp + Tk; Rm[0] = KP500000000 * (Tt - Tu); Rp[WS(rs, 1)] = KP500000000 * (Tt + Tu); Tv = Tc - T9; Ty = Tw - Tx; Ip[WS(rs, 1)] = KP500000000 * (Tv + Ty); Im[0] = KP500000000 * (Ty - Tv); } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 4}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 4, "hc2cfdft_4", twinstr, &GENUS, {24, 14, 6, 0} }; void X(codelet_hc2cfdft_4) (planner *p) { X(khc2c_register) (p, hc2cfdft_4, &desc, HC2C_VIA_DFT); } #endif