/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:10 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include rdft/scalar/hc2cf.h */ /* * This function contains 82 FP additions, 52 FP multiplications, * (or, 60 additions, 30 multiplications, 22 fused multiply/add), * 31 stack variables, 2 constants, and 32 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { E Ty, T14, TO, T1o, Tv, T16, TG, T1m, Ta, T19, TV, T1h, Tk, T1b, T11; E T1j; { E Tw, Tx, TN, TI, TJ, TK; Tw = Ip[0]; Tx = Im[0]; TN = Tw + Tx; TI = Rm[0]; TJ = Rp[0]; TK = TI - TJ; Ty = Tw - Tx; T14 = TJ + TI; { E TH, TL, TM, T1n; TH = W[0]; TL = TH * TK; TM = W[1]; T1n = TM * TK; TO = FNMS(TM, TN, TL); T1o = FMA(TH, TN, T1n); } } { E Tp, TF, Tu, TC; { E Tn, To, Ts, Tt; Tn = Ip[WS(rs, 2)]; To = Im[WS(rs, 2)]; Tp = Tn - To; TF = Tn + To; Ts = Rp[WS(rs, 2)]; Tt = Rm[WS(rs, 2)]; Tu = Ts + Tt; TC = Tt - Ts; } { E Tq, T15, Tm, Tr; Tm = W[6]; Tq = Tm * Tp; T15 = Tm * Tu; Tr = W[7]; Tv = FNMS(Tr, Tu, Tq); T16 = FMA(Tr, Tp, T15); } { E TB, TD, TE, T1l; TB = W[8]; TD = TB * TC; TE = W[9]; T1l = TE * TC; TG = FNMS(TE, TF, TD); T1m = FMA(TB, TF, T1l); } } { E T4, TU, T9, TR; { E T2, T3, T7, T8; T2 = Ip[WS(rs, 1)]; T3 = Im[WS(rs, 1)]; T4 = T2 - T3; TU = T2 + T3; T7 = Rp[WS(rs, 1)]; T8 = Rm[WS(rs, 1)]; T9 = T7 + T8; TR = T7 - T8; } { E T5, T18, T1, T6; T1 = W[2]; T5 = T1 * T4; T18 = T1 * T9; T6 = W[3]; Ta = FNMS(T6, T9, T5); T19 = FMA(T6, T4, T18); } { E TS, T1g, TQ, TT; TQ = W[4]; TS = TQ * TR; T1g = TQ * TU; TT = W[5]; TV = FMA(TT, TU, TS); T1h = FNMS(TT, TR, T1g); } } { E Te, T10, Tj, TX; { E Tc, Td, Th, Ti; Tc = Ip[WS(rs, 3)]; Td = Im[WS(rs, 3)]; Te = Tc - Td; T10 = Tc + Td; Th = Rp[WS(rs, 3)]; Ti = Rm[WS(rs, 3)]; Tj = Th + Ti; TX = Th - Ti; } { E Tf, T1a, Tb, Tg; Tb = W[10]; Tf = Tb * Te; T1a = Tb * Tj; Tg = W[11]; Tk = FNMS(Tg, Tj, Tf); T1b = FMA(Tg, Te, T1a); } { E TY, T1i, TW, TZ; TW = W[12]; TY = TW * TX; T1i = TW * T10; TZ = W[13]; T11 = FMA(TZ, T10, TY); T1j = FNMS(TZ, TX, T1i); } } { E TA, T1f, T1q, T1s, T13, T1e, T1d, T1r; { E Tl, Tz, T1k, T1p; Tl = Ta + Tk; Tz = Tv + Ty; TA = Tl + Tz; T1f = Tz - Tl; T1k = T1h + T1j; T1p = T1m + T1o; T1q = T1k - T1p; T1s = T1k + T1p; } { E TP, T12, T17, T1c; TP = TG + TO; T12 = TV + T11; T13 = TP - T12; T1e = T12 + TP; T17 = T14 + T16; T1c = T19 + T1b; T1d = T17 - T1c; T1r = T17 + T1c; } Ip[0] = KP500000000 * (TA + T13); Rp[0] = KP500000000 * (T1r + T1s); Im[WS(rs, 3)] = KP500000000 * (T13 - TA); Rm[WS(rs, 3)] = KP500000000 * (T1r - T1s); Rm[WS(rs, 1)] = KP500000000 * (T1d - T1e); Im[WS(rs, 1)] = KP500000000 * (T1q - T1f); Rp[WS(rs, 2)] = KP500000000 * (T1d + T1e); Ip[WS(rs, 2)] = KP500000000 * (T1f + T1q); } { E T1v, T1H, T1F, T1L, T1y, T1I, T1B, T1J; { E T1t, T1u, T1D, T1E; T1t = Ty - Tv; T1u = T19 - T1b; T1v = T1t - T1u; T1H = T1u + T1t; T1D = T14 - T16; T1E = Ta - Tk; T1F = T1D - T1E; T1L = T1D + T1E; } { E T1w, T1x, T1z, T1A; T1w = T1j - T1h; T1x = TV - T11; T1y = T1w + T1x; T1I = T1w - T1x; T1z = TO - TG; T1A = T1o - T1m; T1B = T1z - T1A; T1J = T1z + T1A; } { E T1C, T1M, T1G, T1K; T1C = T1y + T1B; Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1C, T1v)); Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1C, T1v))); T1M = T1I + T1J; Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1M, T1L)); Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1M, T1L)); T1G = T1B - T1y; Rm[0] = KP500000000 * (FNMS(KP707106781, T1G, T1F)); Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1G, T1F)); T1K = T1I - T1J; Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1K, T1H)); Im[0] = -(KP500000000 * (FNMS(KP707106781, T1K, T1H))); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 8}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, {60, 30, 22, 0} }; void X(codelet_hc2cfdft_8) (planner *p) { X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include rdft/scalar/hc2cf.h */ /* * This function contains 82 FP additions, 44 FP multiplications, * (or, 68 additions, 30 multiplications, 14 fused multiply/add), * 39 stack variables, 2 constants, and 32 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP353553390, +0.353553390593273762200422181052424519642417969); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { E Tv, TX, Ts, TY, TE, T1a, TJ, T19, T1l, T1m, T9, T10, Ti, T11, TP; E T16, TU, T17, T1i, T1j; { E Tt, Tu, TD, Tz, TA, TB, Tn, TI, Tr, TG, Tk, To; Tt = Ip[0]; Tu = Im[0]; TD = Tt + Tu; Tz = Rm[0]; TA = Rp[0]; TB = Tz - TA; { E Tl, Tm, Tp, Tq; Tl = Ip[WS(rs, 2)]; Tm = Im[WS(rs, 2)]; Tn = Tl - Tm; TI = Tl + Tm; Tp = Rp[WS(rs, 2)]; Tq = Rm[WS(rs, 2)]; Tr = Tp + Tq; TG = Tp - Tq; } Tv = Tt - Tu; TX = TA + Tz; Tk = W[6]; To = W[7]; Ts = FNMS(To, Tr, Tk * Tn); TY = FMA(Tk, Tr, To * Tn); { E Ty, TC, TF, TH; Ty = W[0]; TC = W[1]; TE = FNMS(TC, TD, Ty * TB); T1a = FMA(TC, TB, Ty * TD); TF = W[8]; TH = W[9]; TJ = FMA(TF, TG, TH * TI); T19 = FNMS(TH, TG, TF * TI); } T1l = TJ + TE; T1m = T1a - T19; } { E T4, TO, T8, TM, Td, TT, Th, TR; { E T2, T3, T6, T7; T2 = Ip[WS(rs, 1)]; T3 = Im[WS(rs, 1)]; T4 = T2 - T3; TO = T2 + T3; T6 = Rp[WS(rs, 1)]; T7 = Rm[WS(rs, 1)]; T8 = T6 + T7; TM = T6 - T7; } { E Tb, Tc, Tf, Tg; Tb = Ip[WS(rs, 3)]; Tc = Im[WS(rs, 3)]; Td = Tb - Tc; TT = Tb + Tc; Tf = Rp[WS(rs, 3)]; Tg = Rm[WS(rs, 3)]; Th = Tf + Tg; TR = Tf - Tg; } { E T1, T5, Ta, Te; T1 = W[2]; T5 = W[3]; T9 = FNMS(T5, T8, T1 * T4); T10 = FMA(T1, T8, T5 * T4); Ta = W[10]; Te = W[11]; Ti = FNMS(Te, Th, Ta * Td); T11 = FMA(Ta, Th, Te * Td); { E TL, TN, TQ, TS; TL = W[4]; TN = W[5]; TP = FMA(TL, TM, TN * TO); T16 = FNMS(TN, TM, TL * TO); TQ = W[12]; TS = W[13]; TU = FMA(TQ, TR, TS * TT); T17 = FNMS(TS, TR, TQ * TT); } T1i = T17 - T16; T1j = TP - TU; } } { E T1h, T1t, T1w, T1y, T1o, T1s, T1r, T1x; { E T1f, T1g, T1u, T1v; T1f = Tv - Ts; T1g = T10 - T11; T1h = KP500000000 * (T1f - T1g); T1t = KP500000000 * (T1g + T1f); T1u = T1i - T1j; T1v = T1l + T1m; T1w = KP353553390 * (T1u - T1v); T1y = KP353553390 * (T1u + T1v); } { E T1k, T1n, T1p, T1q; T1k = T1i + T1j; T1n = T1l - T1m; T1o = KP353553390 * (T1k + T1n); T1s = KP353553390 * (T1n - T1k); T1p = TX - TY; T1q = T9 - Ti; T1r = KP500000000 * (T1p - T1q); T1x = KP500000000 * (T1p + T1q); } Ip[WS(rs, 1)] = T1h + T1o; Rp[WS(rs, 1)] = T1x + T1y; Im[WS(rs, 2)] = T1o - T1h; Rm[WS(rs, 2)] = T1x - T1y; Rm[0] = T1r - T1s; Im[0] = T1w - T1t; Rp[WS(rs, 3)] = T1r + T1s; Ip[WS(rs, 3)] = T1t + T1w; } { E Tx, T15, T1c, T1e, TW, T14, T13, T1d; { E Tj, Tw, T18, T1b; Tj = T9 + Ti; Tw = Ts + Tv; Tx = Tj + Tw; T15 = Tw - Tj; T18 = T16 + T17; T1b = T19 + T1a; T1c = T18 - T1b; T1e = T18 + T1b; } { E TK, TV, TZ, T12; TK = TE - TJ; TV = TP + TU; TW = TK - TV; T14 = TV + TK; TZ = TX + TY; T12 = T10 + T11; T13 = TZ - T12; T1d = TZ + T12; } Ip[0] = KP500000000 * (Tx + TW); Rp[0] = KP500000000 * (T1d + T1e); Im[WS(rs, 3)] = KP500000000 * (TW - Tx); Rm[WS(rs, 3)] = KP500000000 * (T1d - T1e); Rm[WS(rs, 1)] = KP500000000 * (T13 - T14); Im[WS(rs, 1)] = KP500000000 * (T1c - T15); Rp[WS(rs, 2)] = KP500000000 * (T13 + T14); Ip[WS(rs, 2)] = KP500000000 * (T15 + T1c); } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 8}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, {68, 30, 14, 0} }; void X(codelet_hc2cfdft_8) (planner *p) { X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT); } #endif