/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:06:31 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -dit -name hf_64 -include rdft/scalar/hf.h */ /* * This function contains 1038 FP additions, 644 FP multiplications, * (or, 520 additions, 126 multiplications, 518 fused multiply/add), * 190 stack variables, 15 constants, and 256 memory accesses */ #include "rdft/scalar/hf.h" static void hf_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP668178637, +0.668178637919298919997757686523080761552472251); DK(KP303346683, +0.303346683607342391675883946941299872384187453); DK(KP534511135, +0.534511135950791641089685961295362908582039528); DK(KP820678790, +0.820678790828660330972281985331011598767386482); DK(KP098491403, +0.098491403357164253077197521291327432293052451); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP198912367, +0.198912367379658006911597622644676228597850501); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP414213562, +0.414213562373095048801688724209698078569671875); { INT m; for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { E Tm, TeM, TjR, Tkl, T7e, TcA, TiV, Tjm, T1G, TeW, TeZ, Thr, T7Q, TcI, T7X; E TcJ, T29, Tf8, Tf5, Thw, T87, TcN, T8u, TcQ, T5K, TfS, Tgc, ThX, Taq, Tdm; E Tbj, Tdx, TN, Tjl, TeP, TiP, T7l, TcB, T7s, TcC, T1f, TeR, TeU, Ths, T7B; E TcF, T7I, TcG, T32, Tfj, Tfg, ThB, T8G, TcU, T93, TcX, T3X, Tfr, TfK, ThM; E T9h, Td3, Taa, Tde, T2A, Tf6, Tfb, Thx, T8m, TcR, T8x, TcO, T3t, Tfh, Tfm; E ThC, T8V, TcY, T96, TcV, T4o, TfL, Tfu, ThN, T9w, Tdf, Tad, Td4, T6b, Tg9; E TfV, ThY, TaF, Tdy, Tbm, Tdn, T4Q, ThJ, TfA, TfN, T9M, Tdh, Taf, Td8, T5h; E ThI, TfF, TfO, Ta1, Tdi, Tag, Tdb, T6D, ThU, Tg1, Tgf, TaV, TdA, Tbo, Tdr; E T74, ThT, Tg6, Tge, Tba, TdB, Tbp, Tdu; { E T1, TiT, T7, TiS, Te, T7a, Tk, T7c; T1 = cr[0]; TiT = ci[0]; { E T3, T6, T4, TiR, T2, T5; T3 = cr[WS(rs, 32)]; T6 = ci[WS(rs, 32)]; T2 = W[62]; T4 = T2 * T3; TiR = T2 * T6; T5 = W[63]; T7 = FMA(T5, T6, T4); TiS = FNMS(T5, T3, TiR); } { E Ta, Td, Tb, T79, T9, Tc; Ta = cr[WS(rs, 16)]; Td = ci[WS(rs, 16)]; T9 = W[30]; Tb = T9 * Ta; T79 = T9 * Td; Tc = W[31]; Te = FMA(Tc, Td, Tb); T7a = FNMS(Tc, Ta, T79); } { E Tg, Tj, Th, T7b, Tf, Ti; Tg = cr[WS(rs, 48)]; Tj = ci[WS(rs, 48)]; Tf = W[94]; Th = Tf * Tg; T7b = Tf * Tj; Ti = W[95]; Tk = FMA(Ti, Tj, Th); T7c = FNMS(Ti, Tg, T7b); } { E T8, Tl, TjP, TjQ; T8 = T1 + T7; Tl = Te + Tk; Tm = T8 + Tl; TeM = T8 - Tl; TjP = Te - Tk; TjQ = TiT - TiS; TjR = TjP + TjQ; Tkl = TjQ - TjP; } { E T78, T7d, TiQ, TiU; T78 = T1 - T7; T7d = T7a - T7c; T7e = T78 - T7d; TcA = T78 + T7d; TiQ = T7a + T7c; TiU = TiS + TiT; TiV = TiQ + TiU; Tjm = TiU - TiQ; } } { E T1l, T7S, T1E, T7O, T1r, T7U, T1y, T7M; { E T1h, T1k, T1i, T7R, T1g, T1j; T1h = cr[WS(rs, 60)]; T1k = ci[WS(rs, 60)]; T1g = W[118]; T1i = T1g * T1h; T7R = T1g * T1k; T1j = W[119]; T1l = FMA(T1j, T1k, T1i); T7S = FNMS(T1j, T1h, T7R); } { E T1A, T1D, T1B, T7N, T1z, T1C; T1A = cr[WS(rs, 44)]; T1D = ci[WS(rs, 44)]; T1z = W[86]; T1B = T1z * T1A; T7N = T1z * T1D; T1C = W[87]; T1E = FMA(T1C, T1D, T1B); T7O = FNMS(T1C, T1A, T7N); } { E T1n, T1q, T1o, T7T, T1m, T1p; T1n = cr[WS(rs, 28)]; T1q = ci[WS(rs, 28)]; T1m = W[54]; T1o = T1m * T1n; T7T = T1m * T1q; T1p = W[55]; T1r = FMA(T1p, T1q, T1o); T7U = FNMS(T1p, T1n, T7T); } { E T1u, T1x, T1v, T7L, T1t, T1w; T1u = cr[WS(rs, 12)]; T1x = ci[WS(rs, 12)]; T1t = W[22]; T1v = T1t * T1u; T7L = T1t * T1x; T1w = W[23]; T1y = FMA(T1w, T1x, T1v); T7M = FNMS(T1w, T1u, T7L); } { E T1s, T1F, TeX, TeY; T1s = T1l + T1r; T1F = T1y + T1E; T1G = T1s + T1F; TeW = T1s - T1F; TeX = T7S + T7U; TeY = T7M + T7O; TeZ = TeX - TeY; Thr = TeX + TeY; } { E T7K, T7P, T7V, T7W; T7K = T1l - T1r; T7P = T7M - T7O; T7Q = T7K - T7P; TcI = T7K + T7P; T7V = T7S - T7U; T7W = T1y - T1E; T7X = T7V + T7W; TcJ = T7V - T7W; } } { E T1O, T8p, T27, T85, T1U, T8r, T21, T83; { E T1K, T1N, T1L, T8o, T1J, T1M; T1K = cr[WS(rs, 2)]; T1N = ci[WS(rs, 2)]; T1J = W[2]; T1L = T1J * T1K; T8o = T1J * T1N; T1M = W[3]; T1O = FMA(T1M, T1N, T1L); T8p = FNMS(T1M, T1K, T8o); } { E T23, T26, T24, T84, T22, T25; T23 = cr[WS(rs, 50)]; T26 = ci[WS(rs, 50)]; T22 = W[98]; T24 = T22 * T23; T84 = T22 * T26; T25 = W[99]; T27 = FMA(T25, T26, T24); T85 = FNMS(T25, T23, T84); } { E T1Q, T1T, T1R, T8q, T1P, T1S; T1Q = cr[WS(rs, 34)]; T1T = ci[WS(rs, 34)]; T1P = W[66]; T1R = T1P * T1Q; T8q = T1P * T1T; T1S = W[67]; T1U = FMA(T1S, T1T, T1R); T8r = FNMS(T1S, T1Q, T8q); } { E T1X, T20, T1Y, T82, T1W, T1Z; T1X = cr[WS(rs, 18)]; T20 = ci[WS(rs, 18)]; T1W = W[34]; T1Y = T1W * T1X; T82 = T1W * T20; T1Z = W[35]; T21 = FMA(T1Z, T20, T1Y); T83 = FNMS(T1Z, T1X, T82); } { E T1V, T28, Tf3, Tf4; T1V = T1O + T1U; T28 = T21 + T27; T29 = T1V + T28; Tf8 = T1V - T28; Tf3 = T8p + T8r; Tf4 = T83 + T85; Tf5 = Tf3 - Tf4; Thw = Tf3 + Tf4; } { E T81, T86, T8s, T8t; T81 = T1O - T1U; T86 = T83 - T85; T87 = T81 - T86; TcN = T81 + T86; T8s = T8p - T8r; T8t = T21 - T27; T8u = T8s + T8t; TcQ = T8s - T8t; } } { E T5p, Tbf, T5I, Tao, T5v, Tbh, T5C, Tam; { E T5l, T5o, T5m, Tbe, T5k, T5n; T5l = cr[WS(rs, 63)]; T5o = ci[WS(rs, 63)]; T5k = W[124]; T5m = T5k * T5l; Tbe = T5k * T5o; T5n = W[125]; T5p = FMA(T5n, T5o, T5m); Tbf = FNMS(T5n, T5l, Tbe); } { E T5E, T5H, T5F, Tan, T5D, T5G; T5E = cr[WS(rs, 47)]; T5H = ci[WS(rs, 47)]; T5D = W[92]; T5F = T5D * T5E; Tan = T5D * T5H; T5G = W[93]; T5I = FMA(T5G, T5H, T5F); Tao = FNMS(T5G, T5E, Tan); } { E T5r, T5u, T5s, Tbg, T5q, T5t; T5r = cr[WS(rs, 31)]; T5u = ci[WS(rs, 31)]; T5q = W[60]; T5s = T5q * T5r; Tbg = T5q * T5u; T5t = W[61]; T5v = FMA(T5t, T5u, T5s); Tbh = FNMS(T5t, T5r, Tbg); } { E T5y, T5B, T5z, Tal, T5x, T5A; T5y = cr[WS(rs, 15)]; T5B = ci[WS(rs, 15)]; T5x = W[28]; T5z = T5x * T5y; Tal = T5x * T5B; T5A = W[29]; T5C = FMA(T5A, T5B, T5z); Tam = FNMS(T5A, T5y, Tal); } { E T5w, T5J, Tga, Tgb; T5w = T5p + T5v; T5J = T5C + T5I; T5K = T5w + T5J; TfS = T5w - T5J; Tga = Tbf + Tbh; Tgb = Tam + Tao; Tgc = Tga - Tgb; ThX = Tga + Tgb; } { E Tak, Tap, Tbd, Tbi; Tak = T5p - T5v; Tap = Tam - Tao; Taq = Tak - Tap; Tdm = Tak + Tap; Tbd = T5I - T5C; Tbi = Tbf - Tbh; Tbj = Tbd - Tbi; Tdx = Tbi + Tbd; } } { E Ts, T7h, TL, T7q, Ty, T7j, TF, T7o; { E To, Tr, Tp, T7g, Tn, Tq; To = cr[WS(rs, 8)]; Tr = ci[WS(rs, 8)]; Tn = W[14]; Tp = Tn * To; T7g = Tn * Tr; Tq = W[15]; Ts = FMA(Tq, Tr, Tp); T7h = FNMS(Tq, To, T7g); } { E TH, TK, TI, T7p, TG, TJ; TH = cr[WS(rs, 24)]; TK = ci[WS(rs, 24)]; TG = W[46]; TI = TG * TH; T7p = TG * TK; TJ = W[47]; TL = FMA(TJ, TK, TI); T7q = FNMS(TJ, TH, T7p); } { E Tu, Tx, Tv, T7i, Tt, Tw; Tu = cr[WS(rs, 40)]; Tx = ci[WS(rs, 40)]; Tt = W[78]; Tv = Tt * Tu; T7i = Tt * Tx; Tw = W[79]; Ty = FMA(Tw, Tx, Tv); T7j = FNMS(Tw, Tu, T7i); } { E TB, TE, TC, T7n, TA, TD; TB = cr[WS(rs, 56)]; TE = ci[WS(rs, 56)]; TA = W[110]; TC = TA * TB; T7n = TA * TE; TD = W[111]; TF = FMA(TD, TE, TC); T7o = FNMS(TD, TB, T7n); } { E Tz, TM, TeN, TeO; Tz = Ts + Ty; TM = TF + TL; TN = Tz + TM; Tjl = Tz - TM; TeN = T7o + T7q; TeO = T7h + T7j; TeP = TeN - TeO; TiP = TeO + TeN; } { E T7f, T7k, T7m, T7r; T7f = Ts - Ty; T7k = T7h - T7j; T7l = T7f - T7k; TcB = T7f + T7k; T7m = TF - TL; T7r = T7o - T7q; T7s = T7m + T7r; TcC = T7m - T7r; } } { E TU, T7D, T1d, T7z, T10, T7F, T17, T7x; { E TQ, TT, TR, T7C, TP, TS; TQ = cr[WS(rs, 4)]; TT = ci[WS(rs, 4)]; TP = W[6]; TR = TP * TQ; T7C = TP * TT; TS = W[7]; TU = FMA(TS, TT, TR); T7D = FNMS(TS, TQ, T7C); } { E T19, T1c, T1a, T7y, T18, T1b; T19 = cr[WS(rs, 52)]; T1c = ci[WS(rs, 52)]; T18 = W[102]; T1a = T18 * T19; T7y = T18 * T1c; T1b = W[103]; T1d = FMA(T1b, T1c, T1a); T7z = FNMS(T1b, T19, T7y); } { E TW, TZ, TX, T7E, TV, TY; TW = cr[WS(rs, 36)]; TZ = ci[WS(rs, 36)]; TV = W[70]; TX = TV * TW; T7E = TV * TZ; TY = W[71]; T10 = FMA(TY, TZ, TX); T7F = FNMS(TY, TW, T7E); } { E T13, T16, T14, T7w, T12, T15; T13 = cr[WS(rs, 20)]; T16 = ci[WS(rs, 20)]; T12 = W[38]; T14 = T12 * T13; T7w = T12 * T16; T15 = W[39]; T17 = FMA(T15, T16, T14); T7x = FNMS(T15, T13, T7w); } { E T11, T1e, TeS, TeT; T11 = TU + T10; T1e = T17 + T1d; T1f = T11 + T1e; TeR = T11 - T1e; TeS = T7D + T7F; TeT = T7x + T7z; TeU = TeS - TeT; Ths = TeS + TeT; } { E T7v, T7A, T7G, T7H; T7v = TU - T10; T7A = T7x - T7z; T7B = T7v - T7A; TcF = T7v + T7A; T7G = T7D - T7F; T7H = T17 - T1d; T7I = T7G + T7H; TcG = T7G - T7H; } } { E T2H, T8Y, T30, T8E, T2N, T90, T2U, T8C; { E T2D, T2G, T2E, T8X, T2C, T2F; T2D = cr[WS(rs, 62)]; T2G = ci[WS(rs, 62)]; T2C = W[122]; T2E = T2C * T2D; T8X = T2C * T2G; T2F = W[123]; T2H = FMA(T2F, T2G, T2E); T8Y = FNMS(T2F, T2D, T8X); } { E T2W, T2Z, T2X, T8D, T2V, T2Y; T2W = cr[WS(rs, 46)]; T2Z = ci[WS(rs, 46)]; T2V = W[90]; T2X = T2V * T2W; T8D = T2V * T2Z; T2Y = W[91]; T30 = FMA(T2Y, T2Z, T2X); T8E = FNMS(T2Y, T2W, T8D); } { E T2J, T2M, T2K, T8Z, T2I, T2L; T2J = cr[WS(rs, 30)]; T2M = ci[WS(rs, 30)]; T2I = W[58]; T2K = T2I * T2J; T8Z = T2I * T2M; T2L = W[59]; T2N = FMA(T2L, T2M, T2K); T90 = FNMS(T2L, T2J, T8Z); } { E T2Q, T2T, T2R, T8B, T2P, T2S; T2Q = cr[WS(rs, 14)]; T2T = ci[WS(rs, 14)]; T2P = W[26]; T2R = T2P * T2Q; T8B = T2P * T2T; T2S = W[27]; T2U = FMA(T2S, T2T, T2R); T8C = FNMS(T2S, T2Q, T8B); } { E T2O, T31, Tfe, Tff; T2O = T2H + T2N; T31 = T2U + T30; T32 = T2O + T31; Tfj = T2O - T31; Tfe = T8Y + T90; Tff = T8C + T8E; Tfg = Tfe - Tff; ThB = Tfe + Tff; } { E T8A, T8F, T91, T92; T8A = T2H - T2N; T8F = T8C - T8E; T8G = T8A - T8F; TcU = T8A + T8F; T91 = T8Y - T90; T92 = T2U - T30; T93 = T91 + T92; TcX = T91 - T92; } } { E T3C, Ta5, T3V, T9f, T3I, Ta7, T3P, T9d; { E T3y, T3B, T3z, Ta4, T3x, T3A; T3y = cr[WS(rs, 1)]; T3B = ci[WS(rs, 1)]; T3x = W[0]; T3z = T3x * T3y; Ta4 = T3x * T3B; T3A = W[1]; T3C = FMA(T3A, T3B, T3z); Ta5 = FNMS(T3A, T3y, Ta4); } { E T3R, T3U, T3S, T9e, T3Q, T3T; T3R = cr[WS(rs, 49)]; T3U = ci[WS(rs, 49)]; T3Q = W[96]; T3S = T3Q * T3R; T9e = T3Q * T3U; T3T = W[97]; T3V = FMA(T3T, T3U, T3S); T9f = FNMS(T3T, T3R, T9e); } { E T3E, T3H, T3F, Ta6, T3D, T3G; T3E = cr[WS(rs, 33)]; T3H = ci[WS(rs, 33)]; T3D = W[64]; T3F = T3D * T3E; Ta6 = T3D * T3H; T3G = W[65]; T3I = FMA(T3G, T3H, T3F); Ta7 = FNMS(T3G, T3E, Ta6); } { E T3L, T3O, T3M, T9c, T3K, T3N; T3L = cr[WS(rs, 17)]; T3O = ci[WS(rs, 17)]; T3K = W[32]; T3M = T3K * T3L; T9c = T3K * T3O; T3N = W[33]; T3P = FMA(T3N, T3O, T3M); T9d = FNMS(T3N, T3L, T9c); } { E T3J, T3W, TfI, TfJ; T3J = T3C + T3I; T3W = T3P + T3V; T3X = T3J + T3W; Tfr = T3J - T3W; TfI = Ta5 + Ta7; TfJ = T9d + T9f; TfK = TfI - TfJ; ThM = TfI + TfJ; } { E T9b, T9g, Ta8, Ta9; T9b = T3C - T3I; T9g = T9d - T9f; T9h = T9b - T9g; Td3 = T9b + T9g; Ta8 = Ta5 - Ta7; Ta9 = T3P - T3V; Taa = Ta8 + Ta9; Tde = Ta8 - Ta9; } } { E T2f, T8a, T2y, T8j, T2l, T8c, T2s, T8h; { E T2b, T2e, T2c, T89, T2a, T2d; T2b = cr[WS(rs, 10)]; T2e = ci[WS(rs, 10)]; T2a = W[18]; T2c = T2a * T2b; T89 = T2a * T2e; T2d = W[19]; T2f = FMA(T2d, T2e, T2c); T8a = FNMS(T2d, T2b, T89); } { E T2u, T2x, T2v, T8i, T2t, T2w; T2u = cr[WS(rs, 26)]; T2x = ci[WS(rs, 26)]; T2t = W[50]; T2v = T2t * T2u; T8i = T2t * T2x; T2w = W[51]; T2y = FMA(T2w, T2x, T2v); T8j = FNMS(T2w, T2u, T8i); } { E T2h, T2k, T2i, T8b, T2g, T2j; T2h = cr[WS(rs, 42)]; T2k = ci[WS(rs, 42)]; T2g = W[82]; T2i = T2g * T2h; T8b = T2g * T2k; T2j = W[83]; T2l = FMA(T2j, T2k, T2i); T8c = FNMS(T2j, T2h, T8b); } { E T2o, T2r, T2p, T8g, T2n, T2q; T2o = cr[WS(rs, 58)]; T2r = ci[WS(rs, 58)]; T2n = W[114]; T2p = T2n * T2o; T8g = T2n * T2r; T2q = W[115]; T2s = FMA(T2q, T2r, T2p); T8h = FNMS(T2q, T2o, T8g); } { E T2m, T2z, Tf9, Tfa; T2m = T2f + T2l; T2z = T2s + T2y; T2A = T2m + T2z; Tf6 = T2m - T2z; Tf9 = T8h + T8j; Tfa = T8a + T8c; Tfb = Tf9 - Tfa; Thx = Tfa + Tf9; { E T8e, T8v, T8l, T8w; { E T88, T8d, T8f, T8k; T88 = T2f - T2l; T8d = T8a - T8c; T8e = T88 - T8d; T8v = T88 + T8d; T8f = T2s - T2y; T8k = T8h - T8j; T8l = T8f + T8k; T8w = T8k - T8f; } T8m = T8e + T8l; TcR = T8l - T8e; T8x = T8v + T8w; TcO = T8v - T8w; } } } { E T38, T8J, T3r, T8S, T3e, T8L, T3l, T8Q; { E T34, T37, T35, T8I, T33, T36; T34 = cr[WS(rs, 6)]; T37 = ci[WS(rs, 6)]; T33 = W[10]; T35 = T33 * T34; T8I = T33 * T37; T36 = W[11]; T38 = FMA(T36, T37, T35); T8J = FNMS(T36, T34, T8I); } { E T3n, T3q, T3o, T8R, T3m, T3p; T3n = cr[WS(rs, 22)]; T3q = ci[WS(rs, 22)]; T3m = W[42]; T3o = T3m * T3n; T8R = T3m * T3q; T3p = W[43]; T3r = FMA(T3p, T3q, T3o); T8S = FNMS(T3p, T3n, T8R); } { E T3a, T3d, T3b, T8K, T39, T3c; T3a = cr[WS(rs, 38)]; T3d = ci[WS(rs, 38)]; T39 = W[74]; T3b = T39 * T3a; T8K = T39 * T3d; T3c = W[75]; T3e = FMA(T3c, T3d, T3b); T8L = FNMS(T3c, T3a, T8K); } { E T3h, T3k, T3i, T8P, T3g, T3j; T3h = cr[WS(rs, 54)]; T3k = ci[WS(rs, 54)]; T3g = W[106]; T3i = T3g * T3h; T8P = T3g * T3k; T3j = W[107]; T3l = FMA(T3j, T3k, T3i); T8Q = FNMS(T3j, T3h, T8P); } { E T3f, T3s, Tfk, Tfl; T3f = T38 + T3e; T3s = T3l + T3r; T3t = T3f + T3s; Tfh = T3f - T3s; Tfk = T8Q + T8S; Tfl = T8J + T8L; Tfm = Tfk - Tfl; ThC = Tfl + Tfk; { E T8N, T94, T8U, T95; { E T8H, T8M, T8O, T8T; T8H = T38 - T3e; T8M = T8J - T8L; T8N = T8H - T8M; T94 = T8H + T8M; T8O = T3l - T3r; T8T = T8Q - T8S; T8U = T8O + T8T; T95 = T8T - T8O; } T8V = T8N + T8U; TcY = T8U - T8N; T96 = T94 + T95; TcV = T94 - T95; } } } { E T43, T9k, T4m, T9t, T49, T9m, T4g, T9r; { E T3Z, T42, T40, T9j, T3Y, T41; T3Z = cr[WS(rs, 9)]; T42 = ci[WS(rs, 9)]; T3Y = W[16]; T40 = T3Y * T3Z; T9j = T3Y * T42; T41 = W[17]; T43 = FMA(T41, T42, T40); T9k = FNMS(T41, T3Z, T9j); } { E T4i, T4l, T4j, T9s, T4h, T4k; T4i = cr[WS(rs, 25)]; T4l = ci[WS(rs, 25)]; T4h = W[48]; T4j = T4h * T4i; T9s = T4h * T4l; T4k = W[49]; T4m = FMA(T4k, T4l, T4j); T9t = FNMS(T4k, T4i, T9s); } { E T45, T48, T46, T9l, T44, T47; T45 = cr[WS(rs, 41)]; T48 = ci[WS(rs, 41)]; T44 = W[80]; T46 = T44 * T45; T9l = T44 * T48; T47 = W[81]; T49 = FMA(T47, T48, T46); T9m = FNMS(T47, T45, T9l); } { E T4c, T4f, T4d, T9q, T4b, T4e; T4c = cr[WS(rs, 57)]; T4f = ci[WS(rs, 57)]; T4b = W[112]; T4d = T4b * T4c; T9q = T4b * T4f; T4e = W[113]; T4g = FMA(T4e, T4f, T4d); T9r = FNMS(T4e, T4c, T9q); } { E T4a, T4n, Tfs, Tft; T4a = T43 + T49; T4n = T4g + T4m; T4o = T4a + T4n; TfL = T4a - T4n; Tfs = T9r + T9t; Tft = T9k + T9m; Tfu = Tfs - Tft; ThN = Tft + Tfs; { E T9o, Tab, T9v, Tac; { E T9i, T9n, T9p, T9u; T9i = T43 - T49; T9n = T9k - T9m; T9o = T9i - T9n; Tab = T9i + T9n; T9p = T4g - T4m; T9u = T9r - T9t; T9v = T9p + T9u; Tac = T9u - T9p; } T9w = T9o + T9v; Tdf = T9v - T9o; Tad = Tab + Tac; Td4 = Tab - Tac; } } } { E T5Q, Tat, T69, TaC, T5W, Tav, T63, TaA; { E T5M, T5P, T5N, Tas, T5L, T5O; T5M = cr[WS(rs, 7)]; T5P = ci[WS(rs, 7)]; T5L = W[12]; T5N = T5L * T5M; Tas = T5L * T5P; T5O = W[13]; T5Q = FMA(T5O, T5P, T5N); Tat = FNMS(T5O, T5M, Tas); } { E T65, T68, T66, TaB, T64, T67; T65 = cr[WS(rs, 23)]; T68 = ci[WS(rs, 23)]; T64 = W[44]; T66 = T64 * T65; TaB = T64 * T68; T67 = W[45]; T69 = FMA(T67, T68, T66); TaC = FNMS(T67, T65, TaB); } { E T5S, T5V, T5T, Tau, T5R, T5U; T5S = cr[WS(rs, 39)]; T5V = ci[WS(rs, 39)]; T5R = W[76]; T5T = T5R * T5S; Tau = T5R * T5V; T5U = W[77]; T5W = FMA(T5U, T5V, T5T); Tav = FNMS(T5U, T5S, Tau); } { E T5Z, T62, T60, Taz, T5Y, T61; T5Z = cr[WS(rs, 55)]; T62 = ci[WS(rs, 55)]; T5Y = W[108]; T60 = T5Y * T5Z; Taz = T5Y * T62; T61 = W[109]; T63 = FMA(T61, T62, T60); TaA = FNMS(T61, T5Z, Taz); } { E T5X, T6a, TfT, TfU; T5X = T5Q + T5W; T6a = T63 + T69; T6b = T5X + T6a; Tg9 = T6a - T5X; TfT = TaA + TaC; TfU = Tat + Tav; TfV = TfT - TfU; ThY = TfU + TfT; { E Tax, Tbl, TaE, Tbk; { E Tar, Taw, Tay, TaD; Tar = T5Q - T5W; Taw = Tat - Tav; Tax = Tar - Taw; Tbl = Tar + Taw; Tay = T63 - T69; TaD = TaA - TaC; TaE = Tay + TaD; Tbk = Tay - TaD; } TaF = Tax + TaE; Tdy = TaE - Tax; Tbm = Tbk - Tbl; Tdn = Tbl + Tbk; } } } { E T4v, T9G, T4O, T9C, T4B, T9I, T4I, T9A; { E T4r, T4u, T4s, T9F, T4q, T4t; T4r = cr[WS(rs, 5)]; T4u = ci[WS(rs, 5)]; T4q = W[8]; T4s = T4q * T4r; T9F = T4q * T4u; T4t = W[9]; T4v = FMA(T4t, T4u, T4s); T9G = FNMS(T4t, T4r, T9F); } { E T4K, T4N, T4L, T9B, T4J, T4M; T4K = cr[WS(rs, 53)]; T4N = ci[WS(rs, 53)]; T4J = W[104]; T4L = T4J * T4K; T9B = T4J * T4N; T4M = W[105]; T4O = FMA(T4M, T4N, T4L); T9C = FNMS(T4M, T4K, T9B); } { E T4x, T4A, T4y, T9H, T4w, T4z; T4x = cr[WS(rs, 37)]; T4A = ci[WS(rs, 37)]; T4w = W[72]; T4y = T4w * T4x; T9H = T4w * T4A; T4z = W[73]; T4B = FMA(T4z, T4A, T4y); T9I = FNMS(T4z, T4x, T9H); } { E T4E, T4H, T4F, T9z, T4D, T4G; T4E = cr[WS(rs, 21)]; T4H = ci[WS(rs, 21)]; T4D = W[40]; T4F = T4D * T4E; T9z = T4D * T4H; T4G = W[41]; T4I = FMA(T4G, T4H, T4F); T9A = FNMS(T4G, T4E, T9z); } { E T4C, T4P, Tfw, Tfx, Tfy, Tfz; T4C = T4v + T4B; T4P = T4I + T4O; Tfw = T4C - T4P; Tfx = T9G + T9I; Tfy = T9A + T9C; Tfz = Tfx - Tfy; T4Q = T4C + T4P; ThJ = Tfx + Tfy; TfA = Tfw - Tfz; TfN = Tfw + Tfz; } { E T9E, Td6, T9L, Td7; { E T9y, T9D, T9J, T9K; T9y = T4v - T4B; T9D = T9A - T9C; T9E = T9y - T9D; Td6 = T9y + T9D; T9J = T9G - T9I; T9K = T4I - T4O; T9L = T9J + T9K; Td7 = T9J - T9K; } T9M = FNMS(KP414213562, T9L, T9E); Tdh = FNMS(KP414213562, Td6, Td7); Taf = FMA(KP414213562, T9E, T9L); Td8 = FMA(KP414213562, Td7, Td6); } } { E T4W, T9V, T5f, T9R, T52, T9X, T59, T9P; { E T4S, T4V, T4T, T9U, T4R, T4U; T4S = cr[WS(rs, 61)]; T4V = ci[WS(rs, 61)]; T4R = W[120]; T4T = T4R * T4S; T9U = T4R * T4V; T4U = W[121]; T4W = FMA(T4U, T4V, T4T); T9V = FNMS(T4U, T4S, T9U); } { E T5b, T5e, T5c, T9Q, T5a, T5d; T5b = cr[WS(rs, 45)]; T5e = ci[WS(rs, 45)]; T5a = W[88]; T5c = T5a * T5b; T9Q = T5a * T5e; T5d = W[89]; T5f = FMA(T5d, T5e, T5c); T9R = FNMS(T5d, T5b, T9Q); } { E T4Y, T51, T4Z, T9W, T4X, T50; T4Y = cr[WS(rs, 29)]; T51 = ci[WS(rs, 29)]; T4X = W[56]; T4Z = T4X * T4Y; T9W = T4X * T51; T50 = W[57]; T52 = FMA(T50, T51, T4Z); T9X = FNMS(T50, T4Y, T9W); } { E T55, T58, T56, T9O, T54, T57; T55 = cr[WS(rs, 13)]; T58 = ci[WS(rs, 13)]; T54 = W[24]; T56 = T54 * T55; T9O = T54 * T58; T57 = W[25]; T59 = FMA(T57, T58, T56); T9P = FNMS(T57, T55, T9O); } { E T53, T5g, TfB, TfC, TfD, TfE; T53 = T4W + T52; T5g = T59 + T5f; TfB = T53 - T5g; TfC = T9V + T9X; TfD = T9P + T9R; TfE = TfC - TfD; T5h = T53 + T5g; ThI = TfC + TfD; TfF = TfB + TfE; TfO = TfE - TfB; } { E T9T, Td9, Ta0, Tda; { E T9N, T9S, T9Y, T9Z; T9N = T4W - T52; T9S = T9P - T9R; T9T = T9N - T9S; Td9 = T9N + T9S; T9Y = T9V - T9X; T9Z = T59 - T5f; Ta0 = T9Y + T9Z; Tda = T9Y - T9Z; } Ta1 = FMA(KP414213562, Ta0, T9T); Tdi = FMA(KP414213562, Td9, Tda); Tag = FNMS(KP414213562, T9T, Ta0); Tdb = FNMS(KP414213562, Tda, Td9); } } { E T6i, TaQ, T6B, TaL, T6o, TaS, T6v, TaJ; { E T6e, T6h, T6f, TaP, T6d, T6g; T6e = cr[WS(rs, 3)]; T6h = ci[WS(rs, 3)]; T6d = W[4]; T6f = T6d * T6e; TaP = T6d * T6h; T6g = W[5]; T6i = FMA(T6g, T6h, T6f); TaQ = FNMS(T6g, T6e, TaP); } { E T6x, T6A, T6y, TaK, T6w, T6z; T6x = cr[WS(rs, 51)]; T6A = ci[WS(rs, 51)]; T6w = W[100]; T6y = T6w * T6x; TaK = T6w * T6A; T6z = W[101]; T6B = FMA(T6z, T6A, T6y); TaL = FNMS(T6z, T6x, TaK); } { E T6k, T6n, T6l, TaR, T6j, T6m; T6k = cr[WS(rs, 35)]; T6n = ci[WS(rs, 35)]; T6j = W[68]; T6l = T6j * T6k; TaR = T6j * T6n; T6m = W[69]; T6o = FMA(T6m, T6n, T6l); TaS = FNMS(T6m, T6k, TaR); } { E T6r, T6u, T6s, TaI, T6q, T6t; T6r = cr[WS(rs, 19)]; T6u = ci[WS(rs, 19)]; T6q = W[36]; T6s = T6q * T6r; TaI = T6q * T6u; T6t = W[37]; T6v = FMA(T6t, T6u, T6s); TaJ = FNMS(T6t, T6r, TaI); } { E T6p, T6C, TfX, TfY, TfZ, Tg0; T6p = T6i + T6o; T6C = T6v + T6B; TfX = T6p - T6C; TfY = TaQ + TaS; TfZ = TaJ + TaL; Tg0 = TfY - TfZ; T6D = T6p + T6C; ThU = TfY + TfZ; Tg1 = TfX - Tg0; Tgf = TfX + Tg0; } { E TaN, Tdp, TaU, Tdq; { E TaH, TaM, TaO, TaT; TaH = T6i - T6o; TaM = TaJ - TaL; TaN = TaH - TaM; Tdp = TaH + TaM; TaO = T6B - T6v; TaT = TaQ - TaS; TaU = TaO - TaT; Tdq = TaT + TaO; } TaV = FMA(KP414213562, TaU, TaN); TdA = FNMS(KP414213562, Tdp, Tdq); Tbo = FNMS(KP414213562, TaN, TaU); Tdr = FMA(KP414213562, Tdq, Tdp); } } { E T6J, Tb5, T72, Tb0, T6P, Tb7, T6W, TaY; { E T6F, T6I, T6G, Tb4, T6E, T6H; T6F = cr[WS(rs, 59)]; T6I = ci[WS(rs, 59)]; T6E = W[116]; T6G = T6E * T6F; Tb4 = T6E * T6I; T6H = W[117]; T6J = FMA(T6H, T6I, T6G); Tb5 = FNMS(T6H, T6F, Tb4); } { E T6Y, T71, T6Z, TaZ, T6X, T70; T6Y = cr[WS(rs, 43)]; T71 = ci[WS(rs, 43)]; T6X = W[84]; T6Z = T6X * T6Y; TaZ = T6X * T71; T70 = W[85]; T72 = FMA(T70, T71, T6Z); Tb0 = FNMS(T70, T6Y, TaZ); } { E T6L, T6O, T6M, Tb6, T6K, T6N; T6L = cr[WS(rs, 27)]; T6O = ci[WS(rs, 27)]; T6K = W[52]; T6M = T6K * T6L; Tb6 = T6K * T6O; T6N = W[53]; T6P = FMA(T6N, T6O, T6M); Tb7 = FNMS(T6N, T6L, Tb6); } { E T6S, T6V, T6T, TaX, T6R, T6U; T6S = cr[WS(rs, 11)]; T6V = ci[WS(rs, 11)]; T6R = W[20]; T6T = T6R * T6S; TaX = T6R * T6V; T6U = W[21]; T6W = FMA(T6U, T6V, T6T); TaY = FNMS(T6U, T6S, TaX); } { E T6Q, T73, Tg2, Tg3, Tg4, Tg5; T6Q = T6J + T6P; T73 = T6W + T72; Tg2 = T6Q - T73; Tg3 = Tb5 + Tb7; Tg4 = TaY + Tb0; Tg5 = Tg3 - Tg4; T74 = T6Q + T73; ThT = Tg3 + Tg4; Tg6 = Tg2 + Tg5; Tge = Tg2 - Tg5; } { E Tb2, Tds, Tb9, Tdt; { E TaW, Tb1, Tb3, Tb8; TaW = T6J - T6P; Tb1 = TaY - Tb0; Tb2 = TaW - Tb1; Tds = TaW + Tb1; Tb3 = T72 - T6W; Tb8 = Tb5 - Tb7; Tb9 = Tb3 - Tb8; Tdt = Tb8 + Tb3; } Tba = FNMS(KP414213562, Tb9, Tb2); TdB = FMA(KP414213562, Tds, Tdt); Tbp = FMA(KP414213562, Tb2, Tb9); Tdu = FNMS(KP414213562, Tdt, Tds); } } { E T1I, Tio, T3v, Tj1, TiX, Tj2, Tir, TiN, T76, TiJ, TiC, TiG, T5j, TiK, Tix; E TiF; { E TO, T1H, Tip, Tiq; TO = Tm + TN; T1H = T1f + T1G; T1I = TO + T1H; Tio = TO - T1H; { E T2B, T3u, TiO, TiW; T2B = T29 + T2A; T3u = T32 + T3t; T3v = T2B + T3u; Tj1 = T2B - T3u; TiO = Ths + Thr; TiW = TiP + TiV; TiX = TiO + TiW; Tj2 = TiW - TiO; } Tip = ThB + ThC; Tiq = Thw + Thx; Tir = Tip - Tiq; TiN = Tiq + Tip; { E T6c, T75, Tiy, Tiz, TiA, TiB; T6c = T5K + T6b; T75 = T6D + T74; Tiy = T6c - T75; Tiz = ThX + ThY; TiA = ThU + ThT; TiB = Tiz - TiA; T76 = T6c + T75; TiJ = Tiz + TiA; TiC = Tiy - TiB; TiG = Tiy + TiB; } { E T4p, T5i, Tit, Tiu, Tiv, Tiw; T4p = T3X + T4o; T5i = T4Q + T5h; Tit = T4p - T5i; Tiu = ThM + ThN; Tiv = ThJ + ThI; Tiw = Tiu - Tiv; T5j = T4p + T5i; TiK = Tiu + Tiv; Tix = Tit + Tiw; TiF = Tit - Tiw; } } { E T3w, T77, Tj3, Tj4; T3w = T1I + T3v; T77 = T5j + T76; ci[WS(rs, 31)] = T3w - T77; cr[0] = T3w + T77; Tj3 = Tj1 + Tj2; Tj4 = TiC - Tix; cr[WS(rs, 56)] = FMS(KP707106781, Tj4, Tj3); ci[WS(rs, 39)] = FMA(KP707106781, Tj4, Tj3); } { E Tj5, Tj6, Tis, TiD; Tj5 = Tj2 - Tj1; Tj6 = TiG - TiF; cr[WS(rs, 40)] = FMS(KP707106781, Tj6, Tj5); ci[WS(rs, 55)] = FMA(KP707106781, Tj6, Tj5); Tis = Tio - Tir; TiD = Tix + TiC; ci[WS(rs, 23)] = FNMS(KP707106781, TiD, Tis); cr[WS(rs, 8)] = FMA(KP707106781, TiD, Tis); } { E TiE, TiH, TiM, TiY; TiE = Tio + Tir; TiH = TiF + TiG; cr[WS(rs, 24)] = FNMS(KP707106781, TiH, TiE); ci[WS(rs, 7)] = FMA(KP707106781, TiH, TiE); TiM = TiK + TiJ; TiY = TiN + TiX; cr[WS(rs, 32)] = TiM - TiY; ci[WS(rs, 63)] = TiM + TiY; } { E TiZ, Tj0, TiI, TiL; TiZ = T76 - T5j; Tj0 = TiX - TiN; cr[WS(rs, 48)] = TiZ - Tj0; ci[WS(rs, 47)] = TiZ + Tj0; TiI = T1I - T3v; TiL = TiJ - TiK; cr[WS(rs, 16)] = TiI - TiL; ci[WS(rs, 15)] = TiI + TiL; } } { E T99, Tk2, TbB, TjW, Taj, TbL, Tbv, TbF, Tce, Tcy, Tci, Tcu, Tc7, Tcx, Tch; E Tcr, TbZ, Tkg, Tcn, Tka, Tbs, TbM, Tbw, TbI, T80, Tk9, Tkf, Tby, TbS, TjV; E Tk1, Tck; { E T8z, Tbz, T98, TbA; { E T8n, T8y, T8W, T97; T8n = FMA(KP707106781, T8m, T87); T8y = FMA(KP707106781, T8x, T8u); T8z = FNMS(KP198912367, T8y, T8n); Tbz = FMA(KP198912367, T8n, T8y); T8W = FMA(KP707106781, T8V, T8G); T97 = FMA(KP707106781, T96, T93); T98 = FMA(KP198912367, T97, T8W); TbA = FNMS(KP198912367, T8W, T97); } T99 = T8z + T98; Tk2 = T98 - T8z; TbB = Tbz - TbA; TjW = Tbz + TbA; } { E Ta3, TbD, Tai, TbE; { E T9x, Ta2, Tae, Tah; T9x = FMA(KP707106781, T9w, T9h); Ta2 = T9M + Ta1; Ta3 = FMA(KP923879532, Ta2, T9x); TbD = FNMS(KP923879532, Ta2, T9x); Tae = FMA(KP707106781, Tad, Taa); Tah = Taf + Tag; Tai = FMA(KP923879532, Tah, Tae); TbE = FNMS(KP923879532, Tah, Tae); } Taj = FNMS(KP098491403, Tai, Ta3); TbL = FNMS(KP820678790, TbD, TbE); Tbv = FMA(KP098491403, Ta3, Tai); TbF = FMA(KP820678790, TbE, TbD); } { E Tca, Tcs, Tcd, Tct; { E Tc8, Tc9, Tcb, Tcc; Tc8 = FNMS(KP707106781, TaF, Taq); Tc9 = Tbp - Tbo; Tca = FNMS(KP923879532, Tc9, Tc8); Tcs = FMA(KP923879532, Tc9, Tc8); Tcb = FNMS(KP707106781, Tbm, Tbj); Tcc = Tba - TaV; Tcd = FMA(KP923879532, Tcc, Tcb); Tct = FNMS(KP923879532, Tcc, Tcb); } Tce = FNMS(KP534511135, Tcd, Tca); Tcy = FNMS(KP303346683, Tcs, Tct); Tci = FMA(KP534511135, Tca, Tcd); Tcu = FMA(KP303346683, Tct, Tcs); } { E Tc3, Tcp, Tc6, Tcq; { E Tc1, Tc2, Tc4, Tc5; Tc1 = FNMS(KP707106781, T9w, T9h); Tc2 = Taf - Tag; Tc3 = FNMS(KP923879532, Tc2, Tc1); Tcp = FMA(KP923879532, Tc2, Tc1); Tc4 = FNMS(KP707106781, Tad, Taa); Tc5 = Ta1 - T9M; Tc6 = FNMS(KP923879532, Tc5, Tc4); Tcq = FMA(KP923879532, Tc5, Tc4); } Tc7 = FNMS(KP534511135, Tc6, Tc3); Tcx = FNMS(KP303346683, Tcp, Tcq); Tch = FMA(KP534511135, Tc3, Tc6); Tcr = FMA(KP303346683, Tcq, Tcp); } { E TbV, Tcm, TbY, Tcl; { E TbT, TbU, TbW, TbX; TbT = FNMS(KP707106781, T96, T93); TbU = FNMS(KP707106781, T8V, T8G); TbV = FMA(KP668178637, TbU, TbT); Tcm = FNMS(KP668178637, TbT, TbU); TbW = FNMS(KP707106781, T8x, T8u); TbX = FNMS(KP707106781, T8m, T87); TbY = FNMS(KP668178637, TbX, TbW); Tcl = FMA(KP668178637, TbW, TbX); } TbZ = TbV - TbY; Tkg = Tcl - Tcm; Tcn = Tcl + Tcm; Tka = TbY + TbV; } { E Tbc, TbG, Tbr, TbH; { E TaG, Tbb, Tbn, Tbq; TaG = FMA(KP707106781, TaF, Taq); Tbb = TaV + Tba; Tbc = FMA(KP923879532, Tbb, TaG); TbG = FNMS(KP923879532, Tbb, TaG); Tbn = FMA(KP707106781, Tbm, Tbj); Tbq = Tbo + Tbp; Tbr = FMA(KP923879532, Tbq, Tbn); TbH = FNMS(KP923879532, Tbq, Tbn); } Tbs = FNMS(KP098491403, Tbr, Tbc); TbM = FNMS(KP820678790, TbG, TbH); Tbw = FMA(KP098491403, Tbc, Tbr); TbI = FMA(KP820678790, TbH, TbG); } { E T7u, TbO, TjT, Tk7, T7Z, Tk8, TbR, TjU, T7t, TjS; T7t = T7l + T7s; T7u = FMA(KP707106781, T7t, T7e); TbO = FNMS(KP707106781, T7t, T7e); TjS = TcB - TcC; TjT = FMA(KP707106781, TjS, TjR); Tk7 = FNMS(KP707106781, TjS, TjR); { E T7J, T7Y, TbP, TbQ; T7J = FNMS(KP414213562, T7I, T7B); T7Y = FMA(KP414213562, T7X, T7Q); T7Z = T7J + T7Y; Tk8 = T7Y - T7J; TbP = FMA(KP414213562, T7B, T7I); TbQ = FNMS(KP414213562, T7Q, T7X); TbR = TbP - TbQ; TjU = TbP + TbQ; } T80 = FMA(KP923879532, T7Z, T7u); Tk9 = FMA(KP923879532, Tk8, Tk7); Tkf = FNMS(KP923879532, Tk8, Tk7); Tby = FNMS(KP923879532, T7Z, T7u); TbS = FNMS(KP923879532, TbR, TbO); TjV = FMA(KP923879532, TjU, TjT); Tk1 = FNMS(KP923879532, TjU, TjT); Tck = FMA(KP923879532, TbR, TbO); } { E T9a, Tbt, TbK, TbN; T9a = FMA(KP980785280, T99, T80); Tbt = Taj + Tbs; cr[WS(rs, 31)] = FNMS(KP995184726, Tbt, T9a); ci[0] = FMA(KP995184726, Tbt, T9a); TbK = FNMS(KP980785280, TbB, Tby); TbN = TbL + TbM; cr[WS(rs, 23)] = FMA(KP773010453, TbN, TbK); ci[WS(rs, 8)] = FNMS(KP773010453, TbN, TbK); } { E Tkb, Tkc, Tkj, Tkk; Tkb = FMA(KP831469612, Tka, Tk9); Tkc = Tcx - Tcy; cr[WS(rs, 35)] = FMS(KP956940335, Tkc, Tkb); ci[WS(rs, 60)] = FMA(KP956940335, Tkc, Tkb); Tkj = FNMS(KP831469612, Tkg, Tkf); Tkk = Tce - Tc7; cr[WS(rs, 43)] = FMS(KP881921264, Tkk, Tkj); ci[WS(rs, 52)] = FMA(KP881921264, Tkk, Tkj); } { E Tbu, Tbx, TbC, TbJ; Tbu = FNMS(KP980785280, T99, T80); Tbx = Tbv + Tbw; ci[WS(rs, 16)] = FNMS(KP995184726, Tbx, Tbu); cr[WS(rs, 15)] = FMA(KP995184726, Tbx, Tbu); TbC = FMA(KP980785280, TbB, Tby); TbJ = TbF + TbI; ci[WS(rs, 24)] = FNMS(KP773010453, TbJ, TbC); cr[WS(rs, 7)] = FMA(KP773010453, TbJ, TbC); } { E Tkd, Tke, Tkh, Tki; Tkd = FNMS(KP831469612, Tka, Tk9); Tke = Tcu - Tcr; cr[WS(rs, 51)] = FMS(KP956940335, Tke, Tkd); ci[WS(rs, 44)] = FMA(KP956940335, Tke, Tkd); Tkh = FMA(KP831469612, Tkg, Tkf); Tki = Tci - Tch; cr[WS(rs, 59)] = FMS(KP881921264, Tki, Tkh); ci[WS(rs, 36)] = FMA(KP881921264, Tki, Tkh); } { E Tc0, Tcf, Tcw, Tcz; Tc0 = FMA(KP831469612, TbZ, TbS); Tcf = Tc7 + Tce; cr[WS(rs, 27)] = FNMS(KP881921264, Tcf, Tc0); ci[WS(rs, 4)] = FMA(KP881921264, Tcf, Tc0); Tcw = FNMS(KP831469612, Tcn, Tck); Tcz = Tcx + Tcy; cr[WS(rs, 19)] = FMA(KP956940335, Tcz, Tcw); ci[WS(rs, 12)] = FNMS(KP956940335, Tcz, Tcw); } { E TjX, TjY, Tk5, Tk6; TjX = FMA(KP980785280, TjW, TjV); TjY = Tbw - Tbv; cr[WS(rs, 63)] = FMS(KP995184726, TjY, TjX); ci[WS(rs, 32)] = FMA(KP995184726, TjY, TjX); Tk5 = FNMS(KP980785280, Tk2, Tk1); Tk6 = TbI - TbF; cr[WS(rs, 55)] = FMS(KP773010453, Tk6, Tk5); ci[WS(rs, 40)] = FMA(KP773010453, Tk6, Tk5); } { E Tcg, Tcj, Tco, Tcv; Tcg = FNMS(KP831469612, TbZ, TbS); Tcj = Tch + Tci; ci[WS(rs, 20)] = FNMS(KP881921264, Tcj, Tcg); cr[WS(rs, 11)] = FMA(KP881921264, Tcj, Tcg); Tco = FMA(KP831469612, Tcn, Tck); Tcv = Tcr + Tcu; ci[WS(rs, 28)] = FNMS(KP956940335, Tcv, Tco); cr[WS(rs, 3)] = FMA(KP956940335, Tcv, Tco); } { E TjZ, Tk0, Tk3, Tk4; TjZ = FNMS(KP980785280, TjW, TjV); Tk0 = Tbs - Taj; cr[WS(rs, 47)] = FMS(KP995184726, Tk0, TjZ); ci[WS(rs, 48)] = FMA(KP995184726, Tk0, TjZ); Tk3 = FMA(KP980785280, Tk2, Tk1); Tk4 = TbL - TbM; cr[WS(rs, 39)] = FMS(KP773010453, Tk4, Tk3); ci[WS(rs, 56)] = FMA(KP773010453, Tk4, Tk3); } } { E Thu, Ti8, Tj9, Tjf, ThF, Tjg, Tib, Tja, ThR, Til, Ti6, Tif, Ti2, Tim, Ti5; E Tii; { E Thq, Tht, Tj7, Tj8; Thq = Tm - TN; Tht = Thr - Ths; Thu = Thq - Tht; Ti8 = Thq + Tht; Tj7 = T1f - T1G; Tj8 = TiV - TiP; Tj9 = Tj7 + Tj8; Tjf = Tj8 - Tj7; } { E Thz, Ti9, ThE, Tia; { E Thv, Thy, ThA, ThD; Thv = T29 - T2A; Thy = Thw - Thx; Thz = Thv + Thy; Ti9 = Thv - Thy; ThA = T32 - T3t; ThD = ThB - ThC; ThE = ThA - ThD; Tia = ThA + ThD; } ThF = Thz + ThE; Tjg = Tia - Ti9; Tib = Ti9 + Tia; Tja = Thz - ThE; } { E ThL, Tid, ThQ, Tie; { E ThH, ThK, ThO, ThP; ThH = T3X - T4o; ThK = ThI - ThJ; ThL = ThH - ThK; Tid = ThH + ThK; ThO = ThM - ThN; ThP = T4Q - T5h; ThQ = ThO - ThP; Tie = ThO + ThP; } ThR = FMA(KP414213562, ThQ, ThL); Til = FMA(KP414213562, Tid, Tie); Ti6 = FNMS(KP414213562, ThL, ThQ); Tif = FNMS(KP414213562, Tie, Tid); } { E ThW, Tig, Ti1, Tih; { E ThS, ThV, ThZ, Ti0; ThS = T5K - T6b; ThV = ThT - ThU; ThW = ThS - ThV; Tig = ThS + ThV; ThZ = ThX - ThY; Ti0 = T74 - T6D; Ti1 = ThZ + Ti0; Tih = Ti0 - ThZ; } Ti2 = FNMS(KP414213562, Ti1, ThW); Tim = FMA(KP414213562, Tig, Tih); Ti5 = FMA(KP414213562, ThW, Ti1); Tii = FNMS(KP414213562, Tih, Tig); } { E ThG, Ti3, Tjh, Tji; ThG = FMA(KP707106781, ThF, Thu); Ti3 = ThR + Ti2; ci[WS(rs, 27)] = FNMS(KP923879532, Ti3, ThG); cr[WS(rs, 4)] = FMA(KP923879532, Ti3, ThG); Tjh = FMA(KP707106781, Tjg, Tjf); Tji = Ti6 + Ti5; cr[WS(rs, 36)] = FMS(KP923879532, Tji, Tjh); ci[WS(rs, 59)] = FMA(KP923879532, Tji, Tjh); } { E Tjj, Tjk, Ti4, Ti7; Tjj = FNMS(KP707106781, Tjg, Tjf); Tjk = Ti2 - ThR; cr[WS(rs, 52)] = FMS(KP923879532, Tjk, Tjj); ci[WS(rs, 43)] = FMA(KP923879532, Tjk, Tjj); Ti4 = FNMS(KP707106781, ThF, Thu); Ti7 = Ti5 - Ti6; cr[WS(rs, 20)] = FNMS(KP923879532, Ti7, Ti4); ci[WS(rs, 11)] = FMA(KP923879532, Ti7, Ti4); } { E Tic, Tij, Tjb, Tjc; Tic = FMA(KP707106781, Tib, Ti8); Tij = Tif + Tii; cr[WS(rs, 28)] = FNMS(KP923879532, Tij, Tic); ci[WS(rs, 3)] = FMA(KP923879532, Tij, Tic); Tjb = FMA(KP707106781, Tja, Tj9); Tjc = Tim - Til; cr[WS(rs, 60)] = FMS(KP923879532, Tjc, Tjb); ci[WS(rs, 35)] = FMA(KP923879532, Tjc, Tjb); } { E Tjd, Tje, Tik, Tin; Tjd = FNMS(KP707106781, Tja, Tj9); Tje = Tii - Tif; cr[WS(rs, 44)] = FMS(KP923879532, Tje, Tjd); ci[WS(rs, 51)] = FMA(KP923879532, Tje, Tjd); Tik = FNMS(KP707106781, Tib, Ti8); Tin = Til + Tim; ci[WS(rs, 19)] = FNMS(KP923879532, Tin, Tik); cr[WS(rs, 12)] = FMA(KP923879532, Tin, Tik); } } { E Tf2, TjJ, Tgo, TjD, TgI, Tjv, Tha, Tjp, Tfp, Tjw, Tgr, Tjq, Th4, Tho, Th7; E Thk, TfR, TgB, Tgl, Tgv, TgP, TjK, Thd, TjE, TgX, Thn, Th8, Thh, Tgi, TgC; E Tgm, Tgy; { E TeQ, TjB, Tf1, TjC, TeV, Tf0; TeQ = TeM + TeP; TjB = Tjm - Tjl; TeV = TeR - TeU; Tf0 = TeW + TeZ; Tf1 = TeV + Tf0; TjC = Tf0 - TeV; Tf2 = FNMS(KP707106781, Tf1, TeQ); TjJ = FNMS(KP707106781, TjC, TjB); Tgo = FMA(KP707106781, Tf1, TeQ); TjD = FMA(KP707106781, TjC, TjB); } { E TgE, Tjn, TgH, Tjo, TgF, TgG; TgE = TeM - TeP; Tjn = Tjl + Tjm; TgF = TeR + TeU; TgG = TeW - TeZ; TgH = TgF + TgG; Tjo = TgF - TgG; TgI = FMA(KP707106781, TgH, TgE); Tjv = FNMS(KP707106781, Tjo, Tjn); Tha = FNMS(KP707106781, TgH, TgE); Tjp = FMA(KP707106781, Tjo, Tjn); } { E Tfd, Tgp, Tfo, Tgq; { E Tf7, Tfc, Tfi, Tfn; Tf7 = Tf5 + Tf6; Tfc = Tf8 + Tfb; Tfd = FMA(KP414213562, Tfc, Tf7); Tgp = FNMS(KP414213562, Tf7, Tfc); Tfi = Tfg + Tfh; Tfn = Tfj + Tfm; Tfo = FNMS(KP414213562, Tfn, Tfi); Tgq = FMA(KP414213562, Tfi, Tfn); } Tfp = Tfd - Tfo; Tjw = Tgq - Tgp; Tgr = Tgp + Tgq; Tjq = Tfd + Tfo; } { E Th0, Thi, Th3, Thj; { E TgY, TgZ, Th1, Th2; TgY = TfS - TfV; TgZ = Tgf + Tge; Th0 = FMA(KP707106781, TgZ, TgY); Thi = FNMS(KP707106781, TgZ, TgY); Th1 = Tgc + Tg9; Th2 = Tg6 - Tg1; Th3 = FMA(KP707106781, Th2, Th1); Thj = FNMS(KP707106781, Th2, Th1); } Th4 = FNMS(KP198912367, Th3, Th0); Tho = FNMS(KP668178637, Thi, Thj); Th7 = FMA(KP198912367, Th0, Th3); Thk = FMA(KP668178637, Thj, Thi); } { E TfH, Tgt, TfQ, Tgu; { E Tfv, TfG, TfM, TfP; Tfv = Tfr + Tfu; TfG = TfA + TfF; TfH = FNMS(KP707106781, TfG, Tfv); Tgt = FMA(KP707106781, TfG, Tfv); TfM = TfK + TfL; TfP = TfN + TfO; TfQ = FNMS(KP707106781, TfP, TfM); Tgu = FMA(KP707106781, TfP, TfM); } TfR = FMA(KP668178637, TfQ, TfH); TgB = FMA(KP198912367, Tgt, Tgu); Tgl = FNMS(KP668178637, TfH, TfQ); Tgv = FNMS(KP198912367, Tgu, Tgt); } { E TgL, Thc, TgO, Thb; { E TgJ, TgK, TgM, TgN; TgJ = Tf8 - Tfb; TgK = Tf5 - Tf6; TgL = FMA(KP414213562, TgK, TgJ); Thc = FNMS(KP414213562, TgJ, TgK); TgM = Tfj - Tfm; TgN = Tfg - Tfh; TgO = FNMS(KP414213562, TgN, TgM); Thb = FMA(KP414213562, TgM, TgN); } TgP = TgL + TgO; TjK = TgL - TgO; Thd = Thb - Thc; TjE = Thc + Thb; } { E TgT, Thf, TgW, Thg; { E TgR, TgS, TgU, TgV; TgR = Tfr - Tfu; TgS = TfN - TfO; TgT = FMA(KP707106781, TgS, TgR); Thf = FNMS(KP707106781, TgS, TgR); TgU = TfK - TfL; TgV = TfF - TfA; TgW = FMA(KP707106781, TgV, TgU); Thg = FNMS(KP707106781, TgV, TgU); } TgX = FMA(KP198912367, TgW, TgT); Thn = FMA(KP668178637, Thf, Thg); Th8 = FNMS(KP198912367, TgT, TgW); Thh = FNMS(KP668178637, Thg, Thf); } { E Tg8, Tgw, Tgh, Tgx; { E TfW, Tg7, Tgd, Tgg; TfW = TfS + TfV; Tg7 = Tg1 + Tg6; Tg8 = FNMS(KP707106781, Tg7, TfW); Tgw = FMA(KP707106781, Tg7, TfW); Tgd = Tg9 - Tgc; Tgg = Tge - Tgf; Tgh = FNMS(KP707106781, Tgg, Tgd); Tgx = FMA(KP707106781, Tgg, Tgd); } Tgi = FMA(KP668178637, Tgh, Tg8); TgC = FMA(KP198912367, Tgw, Tgx); Tgm = FNMS(KP668178637, Tg8, Tgh); Tgy = FNMS(KP198912367, Tgx, Tgw); } { E Tfq, Tgj, TgA, TgD; Tfq = FMA(KP923879532, Tfp, Tf2); Tgj = TfR + Tgi; ci[WS(rs, 25)] = FNMS(KP831469612, Tgj, Tfq); cr[WS(rs, 6)] = FMA(KP831469612, Tgj, Tfq); TgA = FNMS(KP923879532, Tgr, Tgo); TgD = TgB + TgC; ci[WS(rs, 17)] = FNMS(KP980785280, TgD, TgA); cr[WS(rs, 14)] = FMA(KP980785280, TgD, TgA); } { E TjF, TjG, TjN, TjO; TjF = FMA(KP923879532, TjE, TjD); TjG = Th8 + Th7; cr[WS(rs, 34)] = FMS(KP980785280, TjG, TjF); ci[WS(rs, 61)] = FMA(KP980785280, TjG, TjF); TjN = FNMS(KP923879532, TjK, TjJ); TjO = Thk - Thh; cr[WS(rs, 42)] = FMS(KP831469612, TjO, TjN); ci[WS(rs, 53)] = FMA(KP831469612, TjO, TjN); } { E Tgk, Tgn, Tgs, Tgz; Tgk = FNMS(KP923879532, Tfp, Tf2); Tgn = Tgl + Tgm; cr[WS(rs, 22)] = FMA(KP831469612, Tgn, Tgk); ci[WS(rs, 9)] = FNMS(KP831469612, Tgn, Tgk); Tgs = FMA(KP923879532, Tgr, Tgo); Tgz = Tgv + Tgy; cr[WS(rs, 30)] = FNMS(KP980785280, Tgz, Tgs); ci[WS(rs, 1)] = FMA(KP980785280, Tgz, Tgs); } { E TjH, TjI, TjL, TjM; TjH = FNMS(KP923879532, TjE, TjD); TjI = Th4 - TgX; cr[WS(rs, 50)] = FMS(KP980785280, TjI, TjH); ci[WS(rs, 45)] = FMA(KP980785280, TjI, TjH); TjL = FMA(KP923879532, TjK, TjJ); TjM = Thn + Tho; cr[WS(rs, 58)] = -(FMA(KP831469612, TjM, TjL)); ci[WS(rs, 37)] = FNMS(KP831469612, TjM, TjL); } { E TgQ, Th5, Thm, Thp; TgQ = FMA(KP923879532, TgP, TgI); Th5 = TgX + Th4; ci[WS(rs, 29)] = FNMS(KP980785280, Th5, TgQ); cr[WS(rs, 2)] = FMA(KP980785280, Th5, TgQ); Thm = FNMS(KP923879532, Thd, Tha); Thp = Thn - Tho; ci[WS(rs, 21)] = FNMS(KP831469612, Thp, Thm); cr[WS(rs, 10)] = FMA(KP831469612, Thp, Thm); } { E Tjr, Tjs, Tjz, TjA; Tjr = FMA(KP923879532, Tjq, Tjp); Tjs = TgC - TgB; cr[WS(rs, 62)] = FMS(KP980785280, Tjs, Tjr); ci[WS(rs, 33)] = FMA(KP980785280, Tjs, Tjr); Tjz = FNMS(KP923879532, Tjw, Tjv); TjA = Tgi - TfR; cr[WS(rs, 54)] = FMS(KP831469612, TjA, Tjz); ci[WS(rs, 41)] = FMA(KP831469612, TjA, Tjz); } { E Th6, Th9, The, Thl; Th6 = FNMS(KP923879532, TgP, TgI); Th9 = Th7 - Th8; cr[WS(rs, 18)] = FNMS(KP980785280, Th9, Th6); ci[WS(rs, 13)] = FMA(KP980785280, Th9, Th6); The = FMA(KP923879532, Thd, Tha); Thl = Thh + Thk; cr[WS(rs, 26)] = FNMS(KP831469612, Thl, The); ci[WS(rs, 5)] = FMA(KP831469612, Thl, The); } { E Tjt, Tju, Tjx, Tjy; Tjt = FNMS(KP923879532, Tjq, Tjp); Tju = Tgy - Tgv; cr[WS(rs, 46)] = FMS(KP980785280, Tju, Tjt); ci[WS(rs, 49)] = FMA(KP980785280, Tju, Tjt); Tjx = FMA(KP923879532, Tjw, Tjv); Tjy = Tgl - Tgm; cr[WS(rs, 38)] = FMS(KP831469612, Tjy, Tjx); ci[WS(rs, 57)] = FMA(KP831469612, Tjy, Tjx); } } { E Td1, Tkw, TdN, Tkq, Tdl, TdX, TdI, TdR, Teq, TeK, Tet, TeG, Tej, TeJ, Teu; E TeD, Teb, TkK, Tez, TkE, TdE, TdY, TdH, TdU, TcM, TkD, TkJ, TdK, Te4, Tkp; E Tkv, Tew; { E TcT, TdM, Td0, TdL; { E TcP, TcS, TcW, TcZ; TcP = FMA(KP707106781, TcO, TcN); TcS = FMA(KP707106781, TcR, TcQ); TcT = FMA(KP198912367, TcS, TcP); TdM = FNMS(KP198912367, TcP, TcS); TcW = FMA(KP707106781, TcV, TcU); TcZ = FMA(KP707106781, TcY, TcX); Td0 = FNMS(KP198912367, TcZ, TcW); TdL = FMA(KP198912367, TcW, TcZ); } Td1 = TcT + Td0; Tkw = TcT - Td0; TdN = TdL - TdM; Tkq = TdM + TdL; } { E Tdd, TdP, Tdk, TdQ; { E Td5, Tdc, Tdg, Tdj; Td5 = FMA(KP707106781, Td4, Td3); Tdc = Td8 + Tdb; Tdd = FMA(KP923879532, Tdc, Td5); TdP = FNMS(KP923879532, Tdc, Td5); Tdg = FMA(KP707106781, Tdf, Tde); Tdj = Tdh + Tdi; Tdk = FMA(KP923879532, Tdj, Tdg); TdQ = FNMS(KP923879532, Tdj, Tdg); } Tdl = FMA(KP098491403, Tdk, Tdd); TdX = FMA(KP820678790, TdP, TdQ); TdI = FNMS(KP098491403, Tdd, Tdk); TdR = FNMS(KP820678790, TdQ, TdP); } { E Tem, TeE, Tep, TeF; { E Tek, Tel, Ten, Teo; Tek = FNMS(KP707106781, Tdn, Tdm); Tel = TdB - TdA; Tem = FNMS(KP923879532, Tel, Tek); TeE = FMA(KP923879532, Tel, Tek); Ten = FNMS(KP707106781, Tdy, Tdx); Teo = Tdu - Tdr; Tep = FMA(KP923879532, Teo, Ten); TeF = FNMS(KP923879532, Teo, Ten); } Teq = FNMS(KP534511135, Tep, Tem); TeK = FNMS(KP303346683, TeE, TeF); Tet = FMA(KP534511135, Tem, Tep); TeG = FMA(KP303346683, TeF, TeE); } { E Tef, TeB, Tei, TeC; { E Ted, Tee, Teg, Teh; Ted = FNMS(KP707106781, Td4, Td3); Tee = Tdi - Tdh; Tef = FNMS(KP923879532, Tee, Ted); TeB = FMA(KP923879532, Tee, Ted); Teg = FNMS(KP707106781, Tdf, Tde); Teh = Td8 - Tdb; Tei = FNMS(KP923879532, Teh, Teg); TeC = FMA(KP923879532, Teh, Teg); } Tej = FMA(KP534511135, Tei, Tef); TeJ = FMA(KP303346683, TeB, TeC); Teu = FNMS(KP534511135, Tef, Tei); TeD = FNMS(KP303346683, TeC, TeB); } { E Te7, Tex, Tea, Tey; { E Te5, Te6, Te8, Te9; Te5 = FNMS(KP707106781, TcR, TcQ); Te6 = FNMS(KP707106781, TcO, TcN); Te7 = FMA(KP668178637, Te6, Te5); Tex = FNMS(KP668178637, Te5, Te6); Te8 = FNMS(KP707106781, TcY, TcX); Te9 = FNMS(KP707106781, TcV, TcU); Tea = FNMS(KP668178637, Te9, Te8); Tey = FMA(KP668178637, Te8, Te9); } Teb = Te7 - Tea; TkK = Tey - Tex; Tez = Tex + Tey; TkE = Te7 + Tea; } { E Tdw, TdS, TdD, TdT; { E Tdo, Tdv, Tdz, TdC; Tdo = FMA(KP707106781, Tdn, Tdm); Tdv = Tdr + Tdu; Tdw = FMA(KP923879532, Tdv, Tdo); TdS = FNMS(KP923879532, Tdv, Tdo); Tdz = FMA(KP707106781, Tdy, Tdx); TdC = TdA + TdB; TdD = FMA(KP923879532, TdC, Tdz); TdT = FNMS(KP923879532, TdC, Tdz); } TdE = FNMS(KP098491403, TdD, Tdw); TdY = FNMS(KP820678790, TdS, TdT); TdH = FMA(KP098491403, Tdw, TdD); TdU = FMA(KP820678790, TdT, TdS); } { E TcE, Te0, Tkn, TkB, TcL, TkC, Te3, Tko, TcD, Tkm; TcD = TcB + TcC; TcE = FMA(KP707106781, TcD, TcA); Te0 = FNMS(KP707106781, TcD, TcA); Tkm = T7s - T7l; Tkn = FMA(KP707106781, Tkm, Tkl); TkB = FNMS(KP707106781, Tkm, Tkl); { E TcH, TcK, Te1, Te2; TcH = FMA(KP414213562, TcG, TcF); TcK = FNMS(KP414213562, TcJ, TcI); TcL = TcH + TcK; TkC = TcH - TcK; Te1 = FMA(KP414213562, TcI, TcJ); Te2 = FNMS(KP414213562, TcF, TcG); Te3 = Te1 - Te2; Tko = Te2 + Te1; } TcM = FMA(KP923879532, TcL, TcE); TkD = FMA(KP923879532, TkC, TkB); TkJ = FNMS(KP923879532, TkC, TkB); TdK = FNMS(KP923879532, TcL, TcE); Te4 = FNMS(KP923879532, Te3, Te0); Tkp = FMA(KP923879532, Tko, Tkn); Tkv = FNMS(KP923879532, Tko, Tkn); Tew = FMA(KP923879532, Te3, Te0); } { E Td2, TdF, TdW, TdZ; Td2 = FMA(KP980785280, Td1, TcM); TdF = Tdl + TdE; ci[WS(rs, 30)] = FNMS(KP995184726, TdF, Td2); cr[WS(rs, 1)] = FMA(KP995184726, TdF, Td2); TdW = FNMS(KP980785280, TdN, TdK); TdZ = TdX - TdY; ci[WS(rs, 22)] = FNMS(KP773010453, TdZ, TdW); cr[WS(rs, 9)] = FMA(KP773010453, TdZ, TdW); } { E TkF, TkG, TkN, TkO; TkF = FMA(KP831469612, TkE, TkD); TkG = TeJ + TeK; cr[WS(rs, 61)] = -(FMA(KP956940335, TkG, TkF)); ci[WS(rs, 34)] = FNMS(KP956940335, TkG, TkF); TkN = FNMS(KP831469612, TkK, TkJ); TkO = Teq - Tej; cr[WS(rs, 53)] = FMS(KP881921264, TkO, TkN); ci[WS(rs, 42)] = FMA(KP881921264, TkO, TkN); } { E TdG, TdJ, TdO, TdV; TdG = FNMS(KP980785280, Td1, TcM); TdJ = TdH - TdI; cr[WS(rs, 17)] = FNMS(KP995184726, TdJ, TdG); ci[WS(rs, 14)] = FMA(KP995184726, TdJ, TdG); TdO = FMA(KP980785280, TdN, TdK); TdV = TdR + TdU; cr[WS(rs, 25)] = FNMS(KP773010453, TdV, TdO); ci[WS(rs, 6)] = FMA(KP773010453, TdV, TdO); } { E TkH, TkI, TkL, TkM; TkH = FNMS(KP831469612, TkE, TkD); TkI = TeG - TeD; cr[WS(rs, 45)] = FMS(KP956940335, TkI, TkH); ci[WS(rs, 50)] = FMA(KP956940335, TkI, TkH); TkL = FMA(KP831469612, TkK, TkJ); TkM = Teu + Tet; cr[WS(rs, 37)] = FMS(KP881921264, TkM, TkL); ci[WS(rs, 58)] = FMA(KP881921264, TkM, TkL); } { E Tec, Ter, TeI, TeL; Tec = FMA(KP831469612, Teb, Te4); Ter = Tej + Teq; ci[WS(rs, 26)] = FNMS(KP881921264, Ter, Tec); cr[WS(rs, 5)] = FMA(KP881921264, Ter, Tec); TeI = FNMS(KP831469612, Tez, Tew); TeL = TeJ - TeK; ci[WS(rs, 18)] = FNMS(KP956940335, TeL, TeI); cr[WS(rs, 13)] = FMA(KP956940335, TeL, TeI); } { E Tkr, Tks, Tkz, TkA; Tkr = FMA(KP980785280, Tkq, Tkp); Tks = TdI + TdH; cr[WS(rs, 33)] = FMS(KP995184726, Tks, Tkr); ci[WS(rs, 62)] = FMA(KP995184726, Tks, Tkr); Tkz = FNMS(KP980785280, Tkw, Tkv); TkA = TdU - TdR; cr[WS(rs, 41)] = FMS(KP773010453, TkA, Tkz); ci[WS(rs, 54)] = FMA(KP773010453, TkA, Tkz); } { E Tes, Tev, TeA, TeH; Tes = FNMS(KP831469612, Teb, Te4); Tev = Tet - Teu; cr[WS(rs, 21)] = FNMS(KP881921264, Tev, Tes); ci[WS(rs, 10)] = FMA(KP881921264, Tev, Tes); TeA = FMA(KP831469612, Tez, Tew); TeH = TeD + TeG; cr[WS(rs, 29)] = FNMS(KP956940335, TeH, TeA); ci[WS(rs, 2)] = FMA(KP956940335, TeH, TeA); } { E Tkt, Tku, Tkx, Tky; Tkt = FNMS(KP980785280, Tkq, Tkp); Tku = TdE - Tdl; cr[WS(rs, 49)] = FMS(KP995184726, Tku, Tkt); ci[WS(rs, 46)] = FMA(KP995184726, Tku, Tkt); Tkx = FMA(KP980785280, Tkw, Tkv); Tky = TdX + TdY; cr[WS(rs, 57)] = -(FMA(KP773010453, Tky, Tkx)); ci[WS(rs, 38)] = FNMS(KP773010453, Tky, Tkx); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 64}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 64, "hf_64", twinstr, &GENUS, {520, 126, 518, 0} }; void X(codelet_hf_64) (planner *p) { X(khc2hc_register) (p, hf_64, &desc); } #else /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 64 -dit -name hf_64 -include rdft/scalar/hf.h */ /* * This function contains 1038 FP additions, 500 FP multiplications, * (or, 808 additions, 270 multiplications, 230 fused multiply/add), * 176 stack variables, 15 constants, and 256 memory accesses */ #include "rdft/scalar/hf.h" static void hf_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP290284677, +0.290284677254462367636192375817395274691476278); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP471396736, +0.471396736825997648556387625905254377657460319); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP098017140, +0.098017140329560601994195563888641845861136673); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP634393284, +0.634393284163645498215171613225493370675687095); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, Tim, TaC; E ThQ, T14, Tfr, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfq, T6J, T9P, TaJ, Tc1; E TcZ, TeF, T1Q, T2d, Tfu, Tfv, Tfw, Tfx, T6Q, TaM, Tdb, TeI, T71, TaQ, T7a; E TaN, Td6, TeJ, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeL; E T7s, TaU, T7B, TaX, Tdh, TeM, T7y, TaT, T5j, TfR, Tec, TeX, TfY, Tgy, T8D; E Tbl, T8O, Tbx, T9l, Tbm, TdV, Tf0, T9i, Tbw, T3M, TfL, TdL, TeT, TfI, Tgt; E T7K, Tbd, T7V, Tb3, T8s, Tbe, Tdu, TeQ, T8p, Tb2, T4x, TfJ, TdE, TdM, TfO; E Tgu, T87, T8u, T8i, T8v, Tba, Tbh, Tdz, TdN, Tb7, Tbg, T64, TfZ, Te5, Ted; E TfU, Tgz, T90, T9n, T9b, T9o, Tbt, TbA, Te0, Tee, Tbq, Tbz; { E T1, TgR, T6, TgQ, Tc, T68, Th, T69; T1 = cr[0]; TgR = ci[0]; { E T3, T5, T2, T4; T3 = cr[WS(rs, 32)]; T5 = ci[WS(rs, 32)]; T2 = W[62]; T4 = W[63]; T6 = FMA(T2, T3, T4 * T5); TgQ = FNMS(T4, T3, T2 * T5); } { E T9, Tb, T8, Ta; T9 = cr[WS(rs, 16)]; Tb = ci[WS(rs, 16)]; T8 = W[30]; Ta = W[31]; Tc = FMA(T8, T9, Ta * Tb); T68 = FNMS(Ta, T9, T8 * Tb); } { E Te, Tg, Td, Tf; Te = cr[WS(rs, 48)]; Tg = ci[WS(rs, 48)]; Td = W[94]; Tf = W[95]; Th = FMA(Td, Te, Tf * Tg); T69 = FNMS(Tf, Te, Td * Tg); } { E T7, Ti, ThR, ThS; T7 = T1 + T6; Ti = Tc + Th; Tj = T7 + Ti; TcL = T7 - Ti; ThR = Tc - Th; ThS = TgR - TgQ; ThT = ThR + ThS; Tin = ThS - ThR; } { E T67, T6a, TgP, TgS; T67 = T1 - T6; T6a = T68 - T69; T6b = T67 - T6a; Taz = T67 + T6a; TgP = T68 + T69; TgS = TgQ + TgR; TgT = TgP + TgS; Thn = TgS - TgP; } } { E To, T6d, Tt, T6e, T6c, T6f, Tz, T6i, TE, T6j, T6h, T6k; { E Tl, Tn, Tk, Tm; Tl = cr[WS(rs, 8)]; Tn = ci[WS(rs, 8)]; Tk = W[14]; Tm = W[15]; To = FMA(Tk, Tl, Tm * Tn); T6d = FNMS(Tm, Tl, Tk * Tn); } { E Tq, Ts, Tp, Tr; Tq = cr[WS(rs, 40)]; Ts = ci[WS(rs, 40)]; Tp = W[78]; Tr = W[79]; Tt = FMA(Tp, Tq, Tr * Ts); T6e = FNMS(Tr, Tq, Tp * Ts); } T6c = To - Tt; T6f = T6d - T6e; { E Tw, Ty, Tv, Tx; Tw = cr[WS(rs, 56)]; Ty = ci[WS(rs, 56)]; Tv = W[110]; Tx = W[111]; Tz = FMA(Tv, Tw, Tx * Ty); T6i = FNMS(Tx, Tw, Tv * Ty); } { E TB, TD, TA, TC; TB = cr[WS(rs, 24)]; TD = ci[WS(rs, 24)]; TA = W[46]; TC = W[47]; TE = FMA(TA, TB, TC * TD); T6j = FNMS(TC, TB, TA * TD); } T6h = Tz - TE; T6k = T6i - T6j; { E Tu, TF, TcM, TcN; Tu = To + Tt; TF = Tz + TE; TG = Tu + TF; Thm = Tu - TF; TcM = T6i + T6j; TcN = T6d + T6e; TcO = TcM - TcN; TgO = TcN + TcM; } { E T6g, T6l, TaA, TaB; T6g = T6c - T6f; T6l = T6h + T6k; T6m = KP707106781 * (T6g + T6l); Tim = KP707106781 * (T6l - T6g); TaA = T6c + T6f; TaB = T6h - T6k; TaC = KP707106781 * (TaA + TaB); ThQ = KP707106781 * (TaA - TaB); } } { E TS, TcR, T6o, T6v, T13, TcS, T6r, T6w, T6s, T6x; { E TM, T6t, TR, T6u; { E TJ, TL, TI, TK; TJ = cr[WS(rs, 4)]; TL = ci[WS(rs, 4)]; TI = W[6]; TK = W[7]; TM = FMA(TI, TJ, TK * TL); T6t = FNMS(TK, TJ, TI * TL); } { E TO, TQ, TN, TP; TO = cr[WS(rs, 36)]; TQ = ci[WS(rs, 36)]; TN = W[70]; TP = W[71]; TR = FMA(TN, TO, TP * TQ); T6u = FNMS(TP, TO, TN * TQ); } TS = TM + TR; TcR = T6t + T6u; T6o = TM - TR; T6v = T6t - T6u; } { E TX, T6p, T12, T6q; { E TU, TW, TT, TV; TU = cr[WS(rs, 20)]; TW = ci[WS(rs, 20)]; TT = W[38]; TV = W[39]; TX = FMA(TT, TU, TV * TW); T6p = FNMS(TV, TU, TT * TW); } { E TZ, T11, TY, T10; TZ = cr[WS(rs, 52)]; T11 = ci[WS(rs, 52)]; TY = W[102]; T10 = W[103]; T12 = FMA(TY, TZ, T10 * T11); T6q = FNMS(T10, TZ, TY * T11); } T13 = TX + T12; TcS = T6p + T6q; T6r = T6p - T6q; T6w = TX - T12; } T14 = TS + T13; Tfr = TcR + TcS; T6s = T6o - T6r; T6x = T6v + T6w; T6y = FNMS(KP382683432, T6x, KP923879532 * T6s); T9O = FMA(KP923879532, T6x, KP382683432 * T6s); { E TaE, TaF, TcQ, TcT; TaE = T6v - T6w; TaF = T6o + T6r; TaG = FMA(KP382683432, TaE, KP923879532 * TaF); Tc0 = FNMS(KP923879532, TaE, KP382683432 * TaF); TcQ = TS - T13; TcT = TcR - TcS; TcU = TcQ + TcT; TeE = TcQ - TcT; } } { E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I; { E T19, T6z, T1e, T6A; { E T16, T18, T15, T17; T16 = cr[WS(rs, 60)]; T18 = ci[WS(rs, 60)]; T15 = W[118]; T17 = W[119]; T19 = FMA(T15, T16, T17 * T18); T6z = FNMS(T17, T16, T15 * T18); } { E T1b, T1d, T1a, T1c; T1b = cr[WS(rs, 28)]; T1d = ci[WS(rs, 28)]; T1a = W[54]; T1c = W[55]; T1e = FMA(T1a, T1b, T1c * T1d); T6A = FNMS(T1c, T1b, T1a * T1d); } T1f = T19 + T1e; TcW = T6z + T6A; T6B = T6z - T6A; T6E = T19 - T1e; } { E T1k, T6F, T1p, T6G; { E T1h, T1j, T1g, T1i; T1h = cr[WS(rs, 12)]; T1j = ci[WS(rs, 12)]; T1g = W[22]; T1i = W[23]; T1k = FMA(T1g, T1h, T1i * T1j); T6F = FNMS(T1i, T1h, T1g * T1j); } { E T1m, T1o, T1l, T1n; T1m = cr[WS(rs, 44)]; T1o = ci[WS(rs, 44)]; T1l = W[86]; T1n = W[87]; T1p = FMA(T1l, T1m, T1n * T1o); T6G = FNMS(T1n, T1m, T1l * T1o); } T1q = T1k + T1p; TcX = T6F + T6G; T6C = T1k - T1p; T6H = T6F - T6G; } T1r = T1f + T1q; Tfq = TcW + TcX; T6D = T6B + T6C; T6I = T6E - T6H; T6J = FMA(KP382683432, T6D, KP923879532 * T6I); T9P = FNMS(KP923879532, T6D, KP382683432 * T6I); { E TaH, TaI, TcV, TcY; TaH = T6E + T6H; TaI = T6B - T6C; TaJ = FNMS(KP382683432, TaI, KP923879532 * TaH); Tc1 = FMA(KP923879532, TaI, KP382683432 * TaH); TcV = T1f - T1q; TcY = TcW - TcX; TcZ = TcV - TcY; TeF = TcV + TcY; } } { E T1y, T73, T1D, T74, T1E, Td7, T1J, T6N, T1O, T6O, T1P, Td8, T21, Td4, T6R; E T6U, T2c, Td3, T6W, T6Z; { E T1v, T1x, T1u, T1w; T1v = cr[WS(rs, 2)]; T1x = ci[WS(rs, 2)]; T1u = W[2]; T1w = W[3]; T1y = FMA(T1u, T1v, T1w * T1x); T73 = FNMS(T1w, T1v, T1u * T1x); } { E T1A, T1C, T1z, T1B; T1A = cr[WS(rs, 34)]; T1C = ci[WS(rs, 34)]; T1z = W[66]; T1B = W[67]; T1D = FMA(T1z, T1A, T1B * T1C); T74 = FNMS(T1B, T1A, T1z * T1C); } T1E = T1y + T1D; Td7 = T73 + T74; { E T1G, T1I, T1F, T1H; T1G = cr[WS(rs, 18)]; T1I = ci[WS(rs, 18)]; T1F = W[34]; T1H = W[35]; T1J = FMA(T1F, T1G, T1H * T1I); T6N = FNMS(T1H, T1G, T1F * T1I); } { E T1L, T1N, T1K, T1M; T1L = cr[WS(rs, 50)]; T1N = ci[WS(rs, 50)]; T1K = W[98]; T1M = W[99]; T1O = FMA(T1K, T1L, T1M * T1N); T6O = FNMS(T1M, T1L, T1K * T1N); } T1P = T1J + T1O; Td8 = T6N + T6O; { E T1V, T6S, T20, T6T; { E T1S, T1U, T1R, T1T; T1S = cr[WS(rs, 10)]; T1U = ci[WS(rs, 10)]; T1R = W[18]; T1T = W[19]; T1V = FMA(T1R, T1S, T1T * T1U); T6S = FNMS(T1T, T1S, T1R * T1U); } { E T1X, T1Z, T1W, T1Y; T1X = cr[WS(rs, 42)]; T1Z = ci[WS(rs, 42)]; T1W = W[82]; T1Y = W[83]; T20 = FMA(T1W, T1X, T1Y * T1Z); T6T = FNMS(T1Y, T1X, T1W * T1Z); } T21 = T1V + T20; Td4 = T6S + T6T; T6R = T1V - T20; T6U = T6S - T6T; } { E T26, T6X, T2b, T6Y; { E T23, T25, T22, T24; T23 = cr[WS(rs, 58)]; T25 = ci[WS(rs, 58)]; T22 = W[114]; T24 = W[115]; T26 = FMA(T22, T23, T24 * T25); T6X = FNMS(T24, T23, T22 * T25); } { E T28, T2a, T27, T29; T28 = cr[WS(rs, 26)]; T2a = ci[WS(rs, 26)]; T27 = W[50]; T29 = W[51]; T2b = FMA(T27, T28, T29 * T2a); T6Y = FNMS(T29, T28, T27 * T2a); } T2c = T26 + T2b; Td3 = T6X + T6Y; T6W = T26 - T2b; T6Z = T6X - T6Y; } T1Q = T1E + T1P; T2d = T21 + T2c; Tfu = T1Q - T2d; Tfv = Td7 + Td8; Tfw = Td4 + Td3; Tfx = Tfv - Tfw; { E T6M, T6P, Td9, Tda; T6M = T1y - T1D; T6P = T6N - T6O; T6Q = T6M - T6P; TaM = T6M + T6P; Td9 = Td7 - Td8; Tda = T21 - T2c; Tdb = Td9 - Tda; TeI = Td9 + Tda; } { E T6V, T70, T78, T79; T6V = T6R - T6U; T70 = T6W + T6Z; T71 = KP707106781 * (T6V + T70); TaQ = KP707106781 * (T70 - T6V); T78 = T6R + T6U; T79 = T6Z - T6W; T7a = KP707106781 * (T78 + T79); TaN = KP707106781 * (T78 - T79); } { E Td2, Td5, T75, T76; Td2 = T1E - T1P; Td5 = Td3 - Td4; Td6 = Td2 - Td5; TeJ = Td2 + Td5; T75 = T73 - T74; T76 = T1J - T1O; T77 = T75 + T76; TaP = T75 - T76; } } { E T2j, T7u, T2o, T7v, T2p, Tdd, T2u, T7e, T2z, T7f, T2A, Tde, T2M, Tdk, T7i; E T7l, T2X, Tdj, T7n, T7q; { E T2g, T2i, T2f, T2h; T2g = cr[WS(rs, 62)]; T2i = ci[WS(rs, 62)]; T2f = W[122]; T2h = W[123]; T2j = FMA(T2f, T2g, T2h * T2i); T7u = FNMS(T2h, T2g, T2f * T2i); } { E T2l, T2n, T2k, T2m; T2l = cr[WS(rs, 30)]; T2n = ci[WS(rs, 30)]; T2k = W[58]; T2m = W[59]; T2o = FMA(T2k, T2l, T2m * T2n); T7v = FNMS(T2m, T2l, T2k * T2n); } T2p = T2j + T2o; Tdd = T7u + T7v; { E T2r, T2t, T2q, T2s; T2r = cr[WS(rs, 14)]; T2t = ci[WS(rs, 14)]; T2q = W[26]; T2s = W[27]; T2u = FMA(T2q, T2r, T2s * T2t); T7e = FNMS(T2s, T2r, T2q * T2t); } { E T2w, T2y, T2v, T2x; T2w = cr[WS(rs, 46)]; T2y = ci[WS(rs, 46)]; T2v = W[90]; T2x = W[91]; T2z = FMA(T2v, T2w, T2x * T2y); T7f = FNMS(T2x, T2w, T2v * T2y); } T2A = T2u + T2z; Tde = T7e + T7f; { E T2G, T7j, T2L, T7k; { E T2D, T2F, T2C, T2E; T2D = cr[WS(rs, 6)]; T2F = ci[WS(rs, 6)]; T2C = W[10]; T2E = W[11]; T2G = FMA(T2C, T2D, T2E * T2F); T7j = FNMS(T2E, T2D, T2C * T2F); } { E T2I, T2K, T2H, T2J; T2I = cr[WS(rs, 38)]; T2K = ci[WS(rs, 38)]; T2H = W[74]; T2J = W[75]; T2L = FMA(T2H, T2I, T2J * T2K); T7k = FNMS(T2J, T2I, T2H * T2K); } T2M = T2G + T2L; Tdk = T7j + T7k; T7i = T2G - T2L; T7l = T7j - T7k; } { E T2R, T7o, T2W, T7p; { E T2O, T2Q, T2N, T2P; T2O = cr[WS(rs, 54)]; T2Q = ci[WS(rs, 54)]; T2N = W[106]; T2P = W[107]; T2R = FMA(T2N, T2O, T2P * T2Q); T7o = FNMS(T2P, T2O, T2N * T2Q); } { E T2T, T2V, T2S, T2U; T2T = cr[WS(rs, 22)]; T2V = ci[WS(rs, 22)]; T2S = W[42]; T2U = W[43]; T2W = FMA(T2S, T2T, T2U * T2V); T7p = FNMS(T2U, T2T, T2S * T2V); } T2X = T2R + T2W; Tdj = T7o + T7p; T7n = T2R - T2W; T7q = T7o - T7p; } T2B = T2p + T2A; T2Y = T2M + T2X; Tfz = T2B - T2Y; TfA = Tdd + Tde; TfB = Tdk + Tdj; TfC = TfA - TfB; { E T7d, T7g, Tdi, Tdl; T7d = T2j - T2o; T7g = T7e - T7f; T7h = T7d - T7g; TaW = T7d + T7g; Tdi = T2p - T2A; Tdl = Tdj - Tdk; Tdm = Tdi - Tdl; TeL = Tdi + Tdl; } { E T7m, T7r, T7z, T7A; T7m = T7i - T7l; T7r = T7n + T7q; T7s = KP707106781 * (T7m + T7r); TaU = KP707106781 * (T7r - T7m); T7z = T7i + T7l; T7A = T7q - T7n; T7B = KP707106781 * (T7z + T7A); TaX = KP707106781 * (T7z - T7A); } { E Tdf, Tdg, T7w, T7x; Tdf = Tdd - Tde; Tdg = T2M - T2X; Tdh = Tdf - Tdg; TeM = Tdf + Tdg; T7w = T7u - T7v; T7x = T2u - T2z; T7y = T7w + T7x; TaT = T7w - T7x; } } { E T4D, T9e, T4I, T9f, T4J, TdR, T4O, T8A, T4T, T8B, T4U, TdS, T56, Tea, T8E; E T8H, T5h, Te9, T8J, T8M; { E T4A, T4C, T4z, T4B; T4A = cr[WS(rs, 63)]; T4C = ci[WS(rs, 63)]; T4z = W[124]; T4B = W[125]; T4D = FMA(T4z, T4A, T4B * T4C); T9e = FNMS(T4B, T4A, T4z * T4C); } { E T4F, T4H, T4E, T4G; T4F = cr[WS(rs, 31)]; T4H = ci[WS(rs, 31)]; T4E = W[60]; T4G = W[61]; T4I = FMA(T4E, T4F, T4G * T4H); T9f = FNMS(T4G, T4F, T4E * T4H); } T4J = T4D + T4I; TdR = T9e + T9f; { E T4L, T4N, T4K, T4M; T4L = cr[WS(rs, 15)]; T4N = ci[WS(rs, 15)]; T4K = W[28]; T4M = W[29]; T4O = FMA(T4K, T4L, T4M * T4N); T8A = FNMS(T4M, T4L, T4K * T4N); } { E T4Q, T4S, T4P, T4R; T4Q = cr[WS(rs, 47)]; T4S = ci[WS(rs, 47)]; T4P = W[92]; T4R = W[93]; T4T = FMA(T4P, T4Q, T4R * T4S); T8B = FNMS(T4R, T4Q, T4P * T4S); } T4U = T4O + T4T; TdS = T8A + T8B; { E T50, T8F, T55, T8G; { E T4X, T4Z, T4W, T4Y; T4X = cr[WS(rs, 7)]; T4Z = ci[WS(rs, 7)]; T4W = W[12]; T4Y = W[13]; T50 = FMA(T4W, T4X, T4Y * T4Z); T8F = FNMS(T4Y, T4X, T4W * T4Z); } { E T52, T54, T51, T53; T52 = cr[WS(rs, 39)]; T54 = ci[WS(rs, 39)]; T51 = W[76]; T53 = W[77]; T55 = FMA(T51, T52, T53 * T54); T8G = FNMS(T53, T52, T51 * T54); } T56 = T50 + T55; Tea = T8F + T8G; T8E = T50 - T55; T8H = T8F - T8G; } { E T5b, T8K, T5g, T8L; { E T58, T5a, T57, T59; T58 = cr[WS(rs, 55)]; T5a = ci[WS(rs, 55)]; T57 = W[108]; T59 = W[109]; T5b = FMA(T57, T58, T59 * T5a); T8K = FNMS(T59, T58, T57 * T5a); } { E T5d, T5f, T5c, T5e; T5d = cr[WS(rs, 23)]; T5f = ci[WS(rs, 23)]; T5c = W[44]; T5e = W[45]; T5g = FMA(T5c, T5d, T5e * T5f); T8L = FNMS(T5e, T5d, T5c * T5f); } T5h = T5b + T5g; Te9 = T8K + T8L; T8J = T5b - T5g; T8M = T8K - T8L; } { E T4V, T5i, Te8, Teb; T4V = T4J + T4U; T5i = T56 + T5h; T5j = T4V + T5i; TfR = T4V - T5i; Te8 = T4J - T4U; Teb = Te9 - Tea; Tec = Te8 - Teb; TeX = Te8 + Teb; } { E TfW, TfX, T8z, T8C; TfW = TdR + TdS; TfX = Tea + Te9; TfY = TfW - TfX; Tgy = TfW + TfX; T8z = T4D - T4I; T8C = T8A - T8B; T8D = T8z - T8C; Tbl = T8z + T8C; } { E T8I, T8N, T9j, T9k; T8I = T8E - T8H; T8N = T8J + T8M; T8O = KP707106781 * (T8I + T8N); Tbx = KP707106781 * (T8N - T8I); T9j = T8E + T8H; T9k = T8M - T8J; T9l = KP707106781 * (T9j + T9k); Tbm = KP707106781 * (T9j - T9k); } { E TdT, TdU, T9g, T9h; TdT = TdR - TdS; TdU = T56 - T5h; TdV = TdT - TdU; Tf0 = TdT + TdU; T9g = T9e - T9f; T9h = T4O - T4T; T9i = T9g + T9h; Tbw = T9g - T9h; } } { E T36, T7G, T3b, T7H, T3c, TdH, T3h, T8m, T3m, T8n, T3n, TdI, T3z, Tds, T7L; E T7O, T3K, Tdr, T7S, T7T; { E T33, T35, T32, T34; T33 = cr[WS(rs, 1)]; T35 = ci[WS(rs, 1)]; T32 = W[0]; T34 = W[1]; T36 = FMA(T32, T33, T34 * T35); T7G = FNMS(T34, T33, T32 * T35); } { E T38, T3a, T37, T39; T38 = cr[WS(rs, 33)]; T3a = ci[WS(rs, 33)]; T37 = W[64]; T39 = W[65]; T3b = FMA(T37, T38, T39 * T3a); T7H = FNMS(T39, T38, T37 * T3a); } T3c = T36 + T3b; TdH = T7G + T7H; { E T3e, T3g, T3d, T3f; T3e = cr[WS(rs, 17)]; T3g = ci[WS(rs, 17)]; T3d = W[32]; T3f = W[33]; T3h = FMA(T3d, T3e, T3f * T3g); T8m = FNMS(T3f, T3e, T3d * T3g); } { E T3j, T3l, T3i, T3k; T3j = cr[WS(rs, 49)]; T3l = ci[WS(rs, 49)]; T3i = W[96]; T3k = W[97]; T3m = FMA(T3i, T3j, T3k * T3l); T8n = FNMS(T3k, T3j, T3i * T3l); } T3n = T3h + T3m; TdI = T8m + T8n; { E T3t, T7M, T3y, T7N; { E T3q, T3s, T3p, T3r; T3q = cr[WS(rs, 9)]; T3s = ci[WS(rs, 9)]; T3p = W[16]; T3r = W[17]; T3t = FMA(T3p, T3q, T3r * T3s); T7M = FNMS(T3r, T3q, T3p * T3s); } { E T3v, T3x, T3u, T3w; T3v = cr[WS(rs, 41)]; T3x = ci[WS(rs, 41)]; T3u = W[80]; T3w = W[81]; T3y = FMA(T3u, T3v, T3w * T3x); T7N = FNMS(T3w, T3v, T3u * T3x); } T3z = T3t + T3y; Tds = T7M + T7N; T7L = T3t - T3y; T7O = T7M - T7N; } { E T3E, T7Q, T3J, T7R; { E T3B, T3D, T3A, T3C; T3B = cr[WS(rs, 57)]; T3D = ci[WS(rs, 57)]; T3A = W[112]; T3C = W[113]; T3E = FMA(T3A, T3B, T3C * T3D); T7Q = FNMS(T3C, T3B, T3A * T3D); } { E T3G, T3I, T3F, T3H; T3G = cr[WS(rs, 25)]; T3I = ci[WS(rs, 25)]; T3F = W[48]; T3H = W[49]; T3J = FMA(T3F, T3G, T3H * T3I); T7R = FNMS(T3H, T3G, T3F * T3I); } T3K = T3E + T3J; Tdr = T7Q + T7R; T7S = T7Q - T7R; T7T = T3E - T3J; } { E T3o, T3L, TdJ, TdK; T3o = T3c + T3n; T3L = T3z + T3K; T3M = T3o + T3L; TfL = T3o - T3L; TdJ = TdH - TdI; TdK = T3z - T3K; TdL = TdJ - TdK; TeT = TdJ + TdK; } { E TfG, TfH, T7I, T7J; TfG = TdH + TdI; TfH = Tds + Tdr; TfI = TfG - TfH; Tgt = TfG + TfH; T7I = T7G - T7H; T7J = T3h - T3m; T7K = T7I + T7J; Tbd = T7I - T7J; } { E T7P, T7U, T8q, T8r; T7P = T7L + T7O; T7U = T7S - T7T; T7V = KP707106781 * (T7P + T7U); Tb3 = KP707106781 * (T7P - T7U); T8q = T7L - T7O; T8r = T7T + T7S; T8s = KP707106781 * (T8q + T8r); Tbe = KP707106781 * (T8r - T8q); } { E Tdq, Tdt, T8l, T8o; Tdq = T3c - T3n; Tdt = Tdr - Tds; Tdu = Tdq - Tdt; TeQ = Tdq + Tdt; T8l = T36 - T3b; T8o = T8m - T8n; T8p = T8l - T8o; Tb2 = T8l + T8o; } } { E T3X, Tdw, T7Z, T82, T4v, TdB, T8b, T8g, T48, Tdx, T80, T85, T4k, TdA, T8a; E T8d; { E T3R, T7X, T3W, T7Y; { E T3O, T3Q, T3N, T3P; T3O = cr[WS(rs, 5)]; T3Q = ci[WS(rs, 5)]; T3N = W[8]; T3P = W[9]; T3R = FMA(T3N, T3O, T3P * T3Q); T7X = FNMS(T3P, T3O, T3N * T3Q); } { E T3T, T3V, T3S, T3U; T3T = cr[WS(rs, 37)]; T3V = ci[WS(rs, 37)]; T3S = W[72]; T3U = W[73]; T3W = FMA(T3S, T3T, T3U * T3V); T7Y = FNMS(T3U, T3T, T3S * T3V); } T3X = T3R + T3W; Tdw = T7X + T7Y; T7Z = T7X - T7Y; T82 = T3R - T3W; } { E T4p, T8e, T4u, T8f; { E T4m, T4o, T4l, T4n; T4m = cr[WS(rs, 13)]; T4o = ci[WS(rs, 13)]; T4l = W[24]; T4n = W[25]; T4p = FMA(T4l, T4m, T4n * T4o); T8e = FNMS(T4n, T4m, T4l * T4o); } { E T4r, T4t, T4q, T4s; T4r = cr[WS(rs, 45)]; T4t = ci[WS(rs, 45)]; T4q = W[88]; T4s = W[89]; T4u = FMA(T4q, T4r, T4s * T4t); T8f = FNMS(T4s, T4r, T4q * T4t); } T4v = T4p + T4u; TdB = T8e + T8f; T8b = T4p - T4u; T8g = T8e - T8f; } { E T42, T83, T47, T84; { E T3Z, T41, T3Y, T40; T3Z = cr[WS(rs, 21)]; T41 = ci[WS(rs, 21)]; T3Y = W[40]; T40 = W[41]; T42 = FMA(T3Y, T3Z, T40 * T41); T83 = FNMS(T40, T3Z, T3Y * T41); } { E T44, T46, T43, T45; T44 = cr[WS(rs, 53)]; T46 = ci[WS(rs, 53)]; T43 = W[104]; T45 = W[105]; T47 = FMA(T43, T44, T45 * T46); T84 = FNMS(T45, T44, T43 * T46); } T48 = T42 + T47; Tdx = T83 + T84; T80 = T42 - T47; T85 = T83 - T84; } { E T4e, T88, T4j, T89; { E T4b, T4d, T4a, T4c; T4b = cr[WS(rs, 61)]; T4d = ci[WS(rs, 61)]; T4a = W[120]; T4c = W[121]; T4e = FMA(T4a, T4b, T4c * T4d); T88 = FNMS(T4c, T4b, T4a * T4d); } { E T4g, T4i, T4f, T4h; T4g = cr[WS(rs, 29)]; T4i = ci[WS(rs, 29)]; T4f = W[56]; T4h = W[57]; T4j = FMA(T4f, T4g, T4h * T4i); T89 = FNMS(T4h, T4g, T4f * T4i); } T4k = T4e + T4j; TdA = T88 + T89; T8a = T88 - T89; T8d = T4e - T4j; } { E T49, T4w, TdC, TdD; T49 = T3X + T48; T4w = T4k + T4v; T4x = T49 + T4w; TfJ = T49 - T4w; TdC = TdA - TdB; TdD = T4k - T4v; TdE = TdC - TdD; TdM = TdD + TdC; } { E TfM, TfN, T81, T86; TfM = TdA + TdB; TfN = Tdw + Tdx; TfO = TfM - TfN; Tgu = TfN + TfM; T81 = T7Z + T80; T86 = T82 - T85; T87 = FMA(KP923879532, T81, KP382683432 * T86); T8u = FNMS(KP382683432, T81, KP923879532 * T86); } { E T8c, T8h, Tb8, Tb9; T8c = T8a + T8b; T8h = T8d - T8g; T8i = FNMS(KP382683432, T8h, KP923879532 * T8c); T8v = FMA(KP382683432, T8c, KP923879532 * T8h); Tb8 = T8d + T8g; Tb9 = T8a - T8b; Tba = FNMS(KP382683432, Tb9, KP923879532 * Tb8); Tbh = FMA(KP923879532, Tb9, KP382683432 * Tb8); } { E Tdv, Tdy, Tb5, Tb6; Tdv = T3X - T48; Tdy = Tdw - Tdx; Tdz = Tdv + Tdy; TdN = Tdv - Tdy; Tb5 = T7Z - T80; Tb6 = T82 + T85; Tb7 = FMA(KP382683432, Tb5, KP923879532 * Tb6); Tbg = FNMS(KP382683432, Tb6, KP923879532 * Tb5); } } { E T5u, Te2, T8Q, T8X, T62, TdY, T94, T99, T5F, Te3, T8T, T8Y, T5R, TdX, T93; E T96; { E T5o, T8V, T5t, T8W; { E T5l, T5n, T5k, T5m; T5l = cr[WS(rs, 3)]; T5n = ci[WS(rs, 3)]; T5k = W[4]; T5m = W[5]; T5o = FMA(T5k, T5l, T5m * T5n); T8V = FNMS(T5m, T5l, T5k * T5n); } { E T5q, T5s, T5p, T5r; T5q = cr[WS(rs, 35)]; T5s = ci[WS(rs, 35)]; T5p = W[68]; T5r = W[69]; T5t = FMA(T5p, T5q, T5r * T5s); T8W = FNMS(T5r, T5q, T5p * T5s); } T5u = T5o + T5t; Te2 = T8V + T8W; T8Q = T5o - T5t; T8X = T8V - T8W; } { E T5W, T97, T61, T98; { E T5T, T5V, T5S, T5U; T5T = cr[WS(rs, 11)]; T5V = ci[WS(rs, 11)]; T5S = W[20]; T5U = W[21]; T5W = FMA(T5S, T5T, T5U * T5V); T97 = FNMS(T5U, T5T, T5S * T5V); } { E T5Y, T60, T5X, T5Z; T5Y = cr[WS(rs, 43)]; T60 = ci[WS(rs, 43)]; T5X = W[84]; T5Z = W[85]; T61 = FMA(T5X, T5Y, T5Z * T60); T98 = FNMS(T5Z, T5Y, T5X * T60); } T62 = T5W + T61; TdY = T97 + T98; T94 = T5W - T61; T99 = T97 - T98; } { E T5z, T8R, T5E, T8S; { E T5w, T5y, T5v, T5x; T5w = cr[WS(rs, 19)]; T5y = ci[WS(rs, 19)]; T5v = W[36]; T5x = W[37]; T5z = FMA(T5v, T5w, T5x * T5y); T8R = FNMS(T5x, T5w, T5v * T5y); } { E T5B, T5D, T5A, T5C; T5B = cr[WS(rs, 51)]; T5D = ci[WS(rs, 51)]; T5A = W[100]; T5C = W[101]; T5E = FMA(T5A, T5B, T5C * T5D); T8S = FNMS(T5C, T5B, T5A * T5D); } T5F = T5z + T5E; Te3 = T8R + T8S; T8T = T8R - T8S; T8Y = T5z - T5E; } { E T5L, T91, T5Q, T92; { E T5I, T5K, T5H, T5J; T5I = cr[WS(rs, 59)]; T5K = ci[WS(rs, 59)]; T5H = W[116]; T5J = W[117]; T5L = FMA(T5H, T5I, T5J * T5K); T91 = FNMS(T5J, T5I, T5H * T5K); } { E T5N, T5P, T5M, T5O; T5N = cr[WS(rs, 27)]; T5P = ci[WS(rs, 27)]; T5M = W[52]; T5O = W[53]; T5Q = FMA(T5M, T5N, T5O * T5P); T92 = FNMS(T5O, T5N, T5M * T5P); } T5R = T5L + T5Q; TdX = T91 + T92; T93 = T91 - T92; T96 = T5L - T5Q; } { E T5G, T63, Te1, Te4; T5G = T5u + T5F; T63 = T5R + T62; T64 = T5G + T63; TfZ = T5G - T63; Te1 = T5u - T5F; Te4 = Te2 - Te3; Te5 = Te1 - Te4; Ted = Te1 + Te4; } { E TfS, TfT, T8U, T8Z; TfS = TdX + TdY; TfT = Te2 + Te3; TfU = TfS - TfT; Tgz = TfT + TfS; T8U = T8Q - T8T; T8Z = T8X + T8Y; T90 = FNMS(KP382683432, T8Z, KP923879532 * T8U); T9n = FMA(KP923879532, T8Z, KP382683432 * T8U); } { E T95, T9a, Tbr, Tbs; T95 = T93 + T94; T9a = T96 - T99; T9b = FMA(KP382683432, T95, KP923879532 * T9a); T9o = FNMS(KP382683432, T9a, KP923879532 * T95); Tbr = T96 + T99; Tbs = T93 - T94; Tbt = FNMS(KP382683432, Tbs, KP923879532 * Tbr); TbA = FMA(KP923879532, Tbs, KP382683432 * Tbr); } { E TdW, TdZ, Tbo, Tbp; TdW = T5R - T62; TdZ = TdX - TdY; Te0 = TdW + TdZ; Tee = TdZ - TdW; Tbo = T8X - T8Y; Tbp = T8Q + T8T; Tbq = FMA(KP382683432, Tbo, KP923879532 * Tbp); Tbz = FNMS(KP382683432, Tbp, KP923879532 * Tbo); } } { E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq; E TgM; { E TH, T1s, TgI, TgJ; TH = Tj + TG; T1s = T14 + T1r; T1t = TH + T1s; Tgn = TH - T1s; TgI = Tgy + Tgz; TgJ = Tgt + Tgu; TgK = TgI - TgJ; TgL = TgJ + TgI; } { E TgN, TgU, T2e, T2Z; TgN = Tfr + Tfq; TgU = TgO + TgT; TgV = TgN + TgU; Th1 = TgU - TgN; T2e = T1Q + T2d; T2Z = T2B + T2Y; T30 = T2e + T2Z; Th0 = T2e - T2Z; } { E T4y, T65, Tgs, Tgv; T4y = T3M + T4x; T65 = T5j + T64; T66 = T4y + T65; TgX = T65 - T4y; Tgs = T3M - T4x; Tgv = Tgt - Tgu; Tgw = Tgs + Tgv; TgE = Tgs - Tgv; } { E Tgx, TgA, Tgo, Tgp; Tgx = T5j - T64; TgA = Tgy - Tgz; TgB = Tgx - TgA; TgF = Tgx + TgA; Tgo = TfA + TfB; Tgp = Tfv + Tfw; Tgq = Tgo - Tgp; TgM = Tgp + Tgo; } { E T31, TgW, TgY, TgH; T31 = T1t + T30; ci[WS(rs, 31)] = T31 - T66; cr[0] = T31 + T66; TgW = TgM + TgV; cr[WS(rs, 32)] = TgL - TgW; ci[WS(rs, 63)] = TgL + TgW; TgY = TgV - TgM; cr[WS(rs, 48)] = TgX - TgY; ci[WS(rs, 47)] = TgX + TgY; TgH = T1t - T30; cr[WS(rs, 16)] = TgH - TgK; ci[WS(rs, 15)] = TgH + TgK; } { E Tgr, TgC, TgZ, Th2; Tgr = Tgn - Tgq; TgC = KP707106781 * (Tgw + TgB); ci[WS(rs, 23)] = Tgr - TgC; cr[WS(rs, 8)] = Tgr + TgC; TgZ = KP707106781 * (TgB - Tgw); Th2 = Th0 + Th1; cr[WS(rs, 56)] = TgZ - Th2; ci[WS(rs, 39)] = TgZ + Th2; } { E Th3, Th4, TgD, TgG; Th3 = KP707106781 * (TgF - TgE); Th4 = Th1 - Th0; cr[WS(rs, 40)] = Th3 - Th4; ci[WS(rs, 55)] = Th3 + Th4; TgD = Tgn + Tgq; TgG = KP707106781 * (TgE + TgF); cr[WS(rs, 24)] = TgD - TgG; ci[WS(rs, 7)] = TgD + TgG; } } { E T6L, T9x, ThV, Ti1, T7E, Ti0, T9A, ThO, T8y, T9K, T9u, T9E, T9r, T9L, T9v; E T9H; { E T6n, T6K, ThP, ThU; T6n = T6b + T6m; T6K = T6y + T6J; T6L = T6n - T6K; T9x = T6n + T6K; ThP = T9O - T9P; ThU = ThQ + ThT; ThV = ThP + ThU; Ti1 = ThU - ThP; } { E T7c, T9y, T7D, T9z; { E T72, T7b, T7t, T7C; T72 = T6Q + T71; T7b = T77 + T7a; T7c = FMA(KP195090322, T72, KP980785280 * T7b); T9y = FNMS(KP195090322, T7b, KP980785280 * T72); T7t = T7h + T7s; T7C = T7y + T7B; T7D = FNMS(KP980785280, T7C, KP195090322 * T7t); T9z = FMA(KP980785280, T7t, KP195090322 * T7C); } T7E = T7c + T7D; Ti0 = T9z - T9y; T9A = T9y + T9z; ThO = T7c - T7D; } { E T8k, T9D, T8x, T9C; { E T7W, T8j, T8t, T8w; T7W = T7K + T7V; T8j = T87 + T8i; T8k = T7W - T8j; T9D = T7W + T8j; T8t = T8p + T8s; T8w = T8u + T8v; T8x = T8t - T8w; T9C = T8t + T8w; } T8y = FMA(KP634393284, T8k, KP773010453 * T8x); T9K = FMA(KP995184726, T9D, KP098017140 * T9C); T9u = FNMS(KP773010453, T8k, KP634393284 * T8x); T9E = FNMS(KP098017140, T9D, KP995184726 * T9C); } { E T9d, T9G, T9q, T9F; { E T8P, T9c, T9m, T9p; T8P = T8D + T8O; T9c = T90 + T9b; T9d = T8P - T9c; T9G = T8P + T9c; T9m = T9i + T9l; T9p = T9n + T9o; T9q = T9m - T9p; T9F = T9m + T9p; } T9r = FNMS(KP634393284, T9q, KP773010453 * T9d); T9L = FNMS(KP995184726, T9F, KP098017140 * T9G); T9v = FMA(KP773010453, T9q, KP634393284 * T9d); T9H = FMA(KP098017140, T9F, KP995184726 * T9G); } { E T7F, T9s, ThZ, Ti2; T7F = T6L + T7E; T9s = T8y + T9r; ci[WS(rs, 24)] = T7F - T9s; cr[WS(rs, 7)] = T7F + T9s; ThZ = T9v - T9u; Ti2 = Ti0 + Ti1; cr[WS(rs, 39)] = ThZ - Ti2; ci[WS(rs, 56)] = ThZ + Ti2; } { E Ti3, Ti4, T9t, T9w; Ti3 = T9r - T8y; Ti4 = Ti1 - Ti0; cr[WS(rs, 55)] = Ti3 - Ti4; ci[WS(rs, 40)] = Ti3 + Ti4; T9t = T6L - T7E; T9w = T9u + T9v; cr[WS(rs, 23)] = T9t - T9w; ci[WS(rs, 8)] = T9t + T9w; } { E T9B, T9I, ThN, ThW; T9B = T9x + T9A; T9I = T9E + T9H; cr[WS(rs, 31)] = T9B - T9I; ci[0] = T9B + T9I; ThN = T9L - T9K; ThW = ThO + ThV; cr[WS(rs, 63)] = ThN - ThW; ci[WS(rs, 32)] = ThN + ThW; } { E ThX, ThY, T9J, T9M; ThX = T9H - T9E; ThY = ThV - ThO; cr[WS(rs, 47)] = ThX - ThY; ci[WS(rs, 48)] = ThX + ThY; T9J = T9x - T9A; T9M = T9K + T9L; ci[WS(rs, 16)] = T9J - T9M; cr[WS(rs, 15)] = T9J + T9M; } } { E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1; E Tg5; { E Tfp, Tfs, Tgf, Tgg; Tfp = Tj - TG; Tfs = Tfq - Tfr; Tft = Tfp - Tfs; Tg7 = Tfp + Tfs; Tgf = TfY + TfZ; Tgg = TfR + TfU; Tgh = FMA(KP382683432, Tgf, KP923879532 * Tgg); Tgl = FNMS(KP923879532, Tgf, KP382683432 * Tgg); } { E Th7, Th8, Tfy, TfD; Th7 = T14 - T1r; Th8 = TgT - TgO; Th9 = Th7 + Th8; Thf = Th8 - Th7; Tfy = Tfu + Tfx; TfD = Tfz - TfC; TfE = KP707106781 * (Tfy + TfD); Th6 = KP707106781 * (Tfy - TfD); } { E TfK, TfP, Tg8, Tg9; TfK = TfI - TfJ; TfP = TfL - TfO; TfQ = FMA(KP382683432, TfK, KP923879532 * TfP); Tg4 = FNMS(KP923879532, TfK, KP382683432 * TfP); Tg8 = Tfu - Tfx; Tg9 = Tfz + TfC; Tga = KP707106781 * (Tg8 + Tg9); The = KP707106781 * (Tg9 - Tg8); } { E Tgc, Tgd, TfV, Tg0; Tgc = TfL + TfO; Tgd = TfI + TfJ; Tge = FNMS(KP382683432, Tgd, KP923879532 * Tgc); Tgk = FMA(KP923879532, Tgd, KP382683432 * Tgc); TfV = TfR - TfU; Tg0 = TfY - TfZ; Tg1 = FNMS(KP382683432, Tg0, KP923879532 * TfV); Tg5 = FMA(KP923879532, Tg0, KP382683432 * TfV); } { E TfF, Tg2, Thd, Thg; TfF = Tft + TfE; Tg2 = TfQ + Tg1; ci[WS(rs, 27)] = TfF - Tg2; cr[WS(rs, 4)] = TfF + Tg2; Thd = Tg5 - Tg4; Thg = The + Thf; cr[WS(rs, 36)] = Thd - Thg; ci[WS(rs, 59)] = Thd + Thg; } { E Thh, Thi, Tg3, Tg6; Thh = Tg1 - TfQ; Thi = Thf - The; cr[WS(rs, 52)] = Thh - Thi; ci[WS(rs, 43)] = Thh + Thi; Tg3 = Tft - TfE; Tg6 = Tg4 + Tg5; cr[WS(rs, 20)] = Tg3 - Tg6; ci[WS(rs, 11)] = Tg3 + Tg6; } { E Tgb, Tgi, Th5, Tha; Tgb = Tg7 + Tga; Tgi = Tge + Tgh; cr[WS(rs, 28)] = Tgb - Tgi; ci[WS(rs, 3)] = Tgb + Tgi; Th5 = Tgl - Tgk; Tha = Th6 + Th9; cr[WS(rs, 60)] = Th5 - Tha; ci[WS(rs, 35)] = Th5 + Tha; } { E Thb, Thc, Tgj, Tgm; Thb = Tgh - Tge; Thc = Th9 - Th6; cr[WS(rs, 44)] = Thb - Thc; ci[WS(rs, 51)] = Thb + Thc; Tgj = Tg7 - Tga; Tgm = Tgk + Tgl; ci[WS(rs, 19)] = Tgj - Tgm; cr[WS(rs, 12)] = Tgj + Tgm; } } { E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6; E Tfg; { E TeD, TeG, Tfa, Tfb; TeD = TcL + TcO; TeG = KP707106781 * (TeE + TeF); TeH = TeD - TeG; Tf9 = TeD + TeG; { E TeK, TeN, Thl, Tho; TeK = FMA(KP923879532, TeI, KP382683432 * TeJ); TeN = FNMS(KP923879532, TeM, KP382683432 * TeL); TeO = TeK + TeN; Thk = TeK - TeN; Thl = KP707106781 * (TcU - TcZ); Tho = Thm + Thn; Thp = Thl + Tho; Thv = Tho - Thl; } Tfa = FNMS(KP382683432, TeI, KP923879532 * TeJ); Tfb = FMA(KP382683432, TeM, KP923879532 * TeL); Tfc = Tfa + Tfb; Thu = Tfb - Tfa; { E TeZ, Tfh, Tf2, Tfi, TeY, Tf1; TeY = KP707106781 * (Te5 + Te0); TeZ = TeX - TeY; Tfh = TeX + TeY; Tf1 = KP707106781 * (Ted + Tee); Tf2 = Tf0 - Tf1; Tfi = Tf0 + Tf1; Tf3 = FNMS(KP555570233, Tf2, KP831469612 * TeZ); Tfn = FMA(KP980785280, Tfh, KP195090322 * Tfi); Tf7 = FMA(KP555570233, TeZ, KP831469612 * Tf2); Tfj = FNMS(KP980785280, Tfi, KP195090322 * Tfh); } { E TeS, Tfe, TeV, Tff, TeR, TeU; TeR = KP707106781 * (TdN + TdM); TeS = TeQ - TeR; Tfe = TeQ + TeR; TeU = KP707106781 * (Tdz + TdE); TeV = TeT - TeU; Tff = TeT + TeU; TeW = FMA(KP831469612, TeS, KP555570233 * TeV); Tfm = FNMS(KP195090322, Tff, KP980785280 * Tfe); Tf6 = FNMS(KP831469612, TeV, KP555570233 * TeS); Tfg = FMA(KP195090322, Tfe, KP980785280 * Tff); } } { E TeP, Tf4, Tht, Thw; TeP = TeH + TeO; Tf4 = TeW + Tf3; ci[WS(rs, 25)] = TeP - Tf4; cr[WS(rs, 6)] = TeP + Tf4; Tht = Tf7 - Tf6; Thw = Thu + Thv; cr[WS(rs, 38)] = Tht - Thw; ci[WS(rs, 57)] = Tht + Thw; } { E Thx, Thy, Tf5, Tf8; Thx = Tf3 - TeW; Thy = Thv - Thu; cr[WS(rs, 54)] = Thx - Thy; ci[WS(rs, 41)] = Thx + Thy; Tf5 = TeH - TeO; Tf8 = Tf6 + Tf7; cr[WS(rs, 22)] = Tf5 - Tf8; ci[WS(rs, 9)] = Tf5 + Tf8; } { E Tfd, Tfk, Thj, Thq; Tfd = Tf9 - Tfc; Tfk = Tfg + Tfj; ci[WS(rs, 17)] = Tfd - Tfk; cr[WS(rs, 14)] = Tfd + Tfk; Thj = Tfj - Tfg; Thq = Thk + Thp; cr[WS(rs, 62)] = Thj - Thq; ci[WS(rs, 33)] = Thj + Thq; } { E Thr, Ths, Tfl, Tfo; Thr = Tfn - Tfm; Ths = Thp - Thk; cr[WS(rs, 46)] = Thr - Ths; ci[WS(rs, 49)] = Thr + Ths; Tfl = Tf9 + Tfc; Tfo = Tfm + Tfn; cr[WS(rs, 30)] = Tfl - Tfo; ci[WS(rs, 1)] = Tfl + Tfo; } } { E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek; E Teu; { E TcP, Td0, Teo, Tep; TcP = TcL - TcO; Td0 = KP707106781 * (TcU + TcZ); Td1 = TcP - Td0; Ten = TcP + Td0; { E Tdc, Tdn, ThB, ThC; Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6); Tdn = FMA(KP923879532, Tdh, KP382683432 * Tdm); Tdo = Tdc + Tdn; ThA = Tdn - Tdc; ThB = KP707106781 * (TeF - TeE); ThC = Thn - Thm; ThD = ThB + ThC; ThJ = ThC - ThB; } Teo = FMA(KP382683432, Tdb, KP923879532 * Td6); Tep = FNMS(KP382683432, Tdh, KP923879532 * Tdm); Teq = Teo + Tep; ThI = Teo - Tep; { E Te7, Tew, Teg, Tev, Te6, Tef; Te6 = KP707106781 * (Te0 - Te5); Te7 = TdV - Te6; Tew = TdV + Te6; Tef = KP707106781 * (Ted - Tee); Teg = Tec - Tef; Tev = Tec + Tef; Teh = FMA(KP555570233, Te7, KP831469612 * Teg); TeB = FMA(KP980785280, Tew, KP195090322 * Tev); Tel = FNMS(KP831469612, Te7, KP555570233 * Teg); Tex = FNMS(KP195090322, Tew, KP980785280 * Tev); } { E TdG, Tet, TdP, Tes, TdF, TdO; TdF = KP707106781 * (Tdz - TdE); TdG = Tdu - TdF; Tet = Tdu + TdF; TdO = KP707106781 * (TdM - TdN); TdP = TdL - TdO; Tes = TdL + TdO; TdQ = FNMS(KP555570233, TdP, KP831469612 * TdG); TeA = FNMS(KP980785280, Tes, KP195090322 * Tet); Tek = FMA(KP831469612, TdP, KP555570233 * TdG); Teu = FMA(KP195090322, Tes, KP980785280 * Tet); } } { E Tdp, Tei, ThH, ThK; Tdp = Td1 + Tdo; Tei = TdQ + Teh; cr[WS(rs, 26)] = Tdp - Tei; ci[WS(rs, 5)] = Tdp + Tei; ThH = Tel - Tek; ThK = ThI + ThJ; cr[WS(rs, 58)] = ThH - ThK; ci[WS(rs, 37)] = ThH + ThK; } { E ThL, ThM, Tej, Tem; ThL = Teh - TdQ; ThM = ThJ - ThI; cr[WS(rs, 42)] = ThL - ThM; ci[WS(rs, 53)] = ThL + ThM; Tej = Td1 - Tdo; Tem = Tek + Tel; ci[WS(rs, 21)] = Tej - Tem; cr[WS(rs, 10)] = Tej + Tem; } { E Ter, Tey, Thz, ThE; Ter = Ten + Teq; Tey = Teu + Tex; ci[WS(rs, 29)] = Ter - Tey; cr[WS(rs, 2)] = Ter + Tey; Thz = TeB - TeA; ThE = ThA + ThD; cr[WS(rs, 34)] = Thz - ThE; ci[WS(rs, 61)] = Thz + ThE; } { E ThF, ThG, Tez, TeC; ThF = Tex - Teu; ThG = ThD - ThA; cr[WS(rs, 50)] = ThF - ThG; ci[WS(rs, 45)] = ThF + ThG; Tez = Ten - Teq; TeC = TeA + TeB; cr[WS(rs, 18)] = Tez - TeC; ci[WS(rs, 13)] = Tez + TeC; } } { E Tc3, Tcv, TiD, TiJ, Tca, TiI, Tcy, TiA, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct; E TcF; { E TbZ, Tc2, TiB, TiC; TbZ = Taz - TaC; Tc2 = Tc0 + Tc1; Tc3 = TbZ - Tc2; Tcv = TbZ + Tc2; TiB = TaG - TaJ; TiC = Tin - Tim; TiD = TiB + TiC; TiJ = TiC - TiB; } { E Tc6, Tcw, Tc9, Tcx; { E Tc4, Tc5, Tc7, Tc8; Tc4 = TaP - TaQ; Tc5 = TaM - TaN; Tc6 = FMA(KP831469612, Tc4, KP555570233 * Tc5); Tcw = FNMS(KP555570233, Tc4, KP831469612 * Tc5); Tc7 = TaW - TaX; Tc8 = TaT - TaU; Tc9 = FNMS(KP831469612, Tc8, KP555570233 * Tc7); Tcx = FMA(KP555570233, Tc8, KP831469612 * Tc7); } Tca = Tc6 + Tc9; TiI = Tcx - Tcw; Tcy = Tcw + Tcx; TiA = Tc6 - Tc9; } { E Tce, TcB, Tch, TcA; { E Tcc, Tcd, Tcf, Tcg; Tcc = Tbd - Tbe; Tcd = Tb7 - Tba; Tce = Tcc - Tcd; TcB = Tcc + Tcd; Tcf = Tb2 - Tb3; Tcg = Tbh - Tbg; Tch = Tcf - Tcg; TcA = Tcf + Tcg; } Tci = FMA(KP471396736, Tce, KP881921264 * Tch); TcI = FMA(KP956940335, TcB, KP290284677 * TcA); Tcs = FNMS(KP881921264, Tce, KP471396736 * Tch); TcC = FNMS(KP290284677, TcB, KP956940335 * TcA); } { E Tcl, TcE, Tco, TcD; { E Tcj, Tck, Tcm, Tcn; Tcj = Tbl - Tbm; Tck = TbA - Tbz; Tcl = Tcj - Tck; TcE = Tcj + Tck; Tcm = Tbw - Tbx; Tcn = Tbq - Tbt; Tco = Tcm - Tcn; TcD = Tcm + Tcn; } Tcp = FNMS(KP471396736, Tco, KP881921264 * Tcl); TcJ = FNMS(KP956940335, TcD, KP290284677 * TcE); Tct = FMA(KP881921264, Tco, KP471396736 * Tcl); TcF = FMA(KP290284677, TcD, KP956940335 * TcE); } { E Tcb, Tcq, TiH, TiK; Tcb = Tc3 + Tca; Tcq = Tci + Tcp; ci[WS(rs, 26)] = Tcb - Tcq; cr[WS(rs, 5)] = Tcb + Tcq; TiH = Tct - Tcs; TiK = TiI + TiJ; cr[WS(rs, 37)] = TiH - TiK; ci[WS(rs, 58)] = TiH + TiK; } { E TiL, TiM, Tcr, Tcu; TiL = Tcp - Tci; TiM = TiJ - TiI; cr[WS(rs, 53)] = TiL - TiM; ci[WS(rs, 42)] = TiL + TiM; Tcr = Tc3 - Tca; Tcu = Tcs + Tct; cr[WS(rs, 21)] = Tcr - Tcu; ci[WS(rs, 10)] = Tcr + Tcu; } { E Tcz, TcG, Tiz, TiE; Tcz = Tcv + Tcy; TcG = TcC + TcF; cr[WS(rs, 29)] = Tcz - TcG; ci[WS(rs, 2)] = Tcz + TcG; Tiz = TcJ - TcI; TiE = TiA + TiD; cr[WS(rs, 61)] = Tiz - TiE; ci[WS(rs, 34)] = Tiz + TiE; } { E TiF, TiG, TcH, TcK; TiF = TcF - TcC; TiG = TiD - TiA; cr[WS(rs, 45)] = TiF - TiG; ci[WS(rs, 50)] = TiF + TiG; TcH = Tcv - Tcy; TcK = TcI + TcJ; ci[WS(rs, 18)] = TcH - TcK; cr[WS(rs, 13)] = TcH + TcK; } } { E TaL, TbJ, Tip, Tiv, Tb0, Tiu, TbM, Tik, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH; E TbT; { E TaD, TaK, Til, Tio; TaD = Taz + TaC; TaK = TaG + TaJ; TaL = TaD - TaK; TbJ = TaD + TaK; Til = Tc1 - Tc0; Tio = Tim + Tin; Tip = Til + Tio; Tiv = Tio - Til; } { E TaS, TbK, TaZ, TbL; { E TaO, TaR, TaV, TaY; TaO = TaM + TaN; TaR = TaP + TaQ; TaS = FNMS(KP980785280, TaR, KP195090322 * TaO); TbK = FMA(KP195090322, TaR, KP980785280 * TaO); TaV = TaT + TaU; TaY = TaW + TaX; TaZ = FMA(KP980785280, TaV, KP195090322 * TaY); TbL = FNMS(KP195090322, TaV, KP980785280 * TaY); } Tb0 = TaS + TaZ; Tiu = TbK - TbL; TbM = TbK + TbL; Tik = TaZ - TaS; } { E Tbc, TbO, Tbj, TbP; { E Tb4, Tbb, Tbf, Tbi; Tb4 = Tb2 + Tb3; Tbb = Tb7 + Tba; Tbc = Tb4 - Tbb; TbO = Tb4 + Tbb; Tbf = Tbd + Tbe; Tbi = Tbg + Tbh; Tbj = Tbf - Tbi; TbP = Tbf + Tbi; } Tbk = FMA(KP634393284, Tbc, KP773010453 * Tbj); TbW = FNMS(KP995184726, TbP, KP098017140 * TbO); TbG = FNMS(KP634393284, Tbj, KP773010453 * Tbc); TbQ = FMA(KP995184726, TbO, KP098017140 * TbP); } { E Tbv, TbR, TbC, TbS; { E Tbn, Tbu, Tby, TbB; Tbn = Tbl + Tbm; Tbu = Tbq + Tbt; Tbv = Tbn - Tbu; TbR = Tbn + Tbu; Tby = Tbw + Tbx; TbB = Tbz + TbA; TbC = Tby - TbB; TbS = Tby + TbB; } TbD = FNMS(KP773010453, TbC, KP634393284 * Tbv); TbX = FMA(KP098017140, TbR, KP995184726 * TbS); TbH = FMA(KP773010453, Tbv, KP634393284 * TbC); TbT = FNMS(KP098017140, TbS, KP995184726 * TbR); } { E Tb1, TbE, Tit, Tiw; Tb1 = TaL - Tb0; TbE = Tbk + TbD; ci[WS(rs, 22)] = Tb1 - TbE; cr[WS(rs, 9)] = Tb1 + TbE; Tit = TbD - Tbk; Tiw = Tiu + Tiv; cr[WS(rs, 57)] = Tit - Tiw; ci[WS(rs, 38)] = Tit + Tiw; } { E Tix, Tiy, TbF, TbI; Tix = TbH - TbG; Tiy = Tiv - Tiu; cr[WS(rs, 41)] = Tix - Tiy; ci[WS(rs, 54)] = Tix + Tiy; TbF = TaL + Tb0; TbI = TbG + TbH; cr[WS(rs, 25)] = TbF - TbI; ci[WS(rs, 6)] = TbF + TbI; } { E TbN, TbU, Tij, Tiq; TbN = TbJ + TbM; TbU = TbQ + TbT; ci[WS(rs, 30)] = TbN - TbU; cr[WS(rs, 1)] = TbN + TbU; Tij = TbX - TbW; Tiq = Tik + Tip; cr[WS(rs, 33)] = Tij - Tiq; ci[WS(rs, 62)] = Tij + Tiq; } { E Tir, Tis, TbV, TbY; Tir = TbT - TbQ; Tis = Tip - Tik; cr[WS(rs, 49)] = Tir - Tis; ci[WS(rs, 46)] = Tir + Tis; TbV = TbJ - TbM; TbY = TbW + TbX; cr[WS(rs, 17)] = TbV - TbY; ci[WS(rs, 14)] = TbV + TbY; } } { E T9R, Taj, Ti9, Tif, T9Y, Tie, Tam, Ti6, Ta6, Taw, Tag, Taq, Tad, Tax, Tah; E Tat; { E T9N, T9Q, Ti7, Ti8; T9N = T6b - T6m; T9Q = T9O + T9P; T9R = T9N - T9Q; Taj = T9N + T9Q; Ti7 = T6J - T6y; Ti8 = ThT - ThQ; Ti9 = Ti7 + Ti8; Tif = Ti8 - Ti7; } { E T9U, Tak, T9X, Tal; { E T9S, T9T, T9V, T9W; T9S = T6Q - T71; T9T = T77 - T7a; T9U = FNMS(KP831469612, T9T, KP555570233 * T9S); Tak = FMA(KP831469612, T9S, KP555570233 * T9T); T9V = T7h - T7s; T9W = T7y - T7B; T9X = FMA(KP555570233, T9V, KP831469612 * T9W); Tal = FNMS(KP555570233, T9W, KP831469612 * T9V); } T9Y = T9U + T9X; Tie = Tak - Tal; Tam = Tak + Tal; Ti6 = T9X - T9U; } { E Ta2, Tao, Ta5, Tap; { E Ta0, Ta1, Ta3, Ta4; Ta0 = T8p - T8s; Ta1 = T87 - T8i; Ta2 = Ta0 - Ta1; Tao = Ta0 + Ta1; Ta3 = T7K - T7V; Ta4 = T8v - T8u; Ta5 = Ta3 - Ta4; Tap = Ta3 + Ta4; } Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5); Taw = FNMS(KP956940335, Tap, KP290284677 * Tao); Tag = FNMS(KP471396736, Ta5, KP881921264 * Ta2); Taq = FMA(KP956940335, Tao, KP290284677 * Tap); } { E Ta9, Tar, Tac, Tas; { E Ta7, Ta8, Taa, Tab; Ta7 = T8D - T8O; Ta8 = T9n - T9o; Ta9 = Ta7 - Ta8; Tar = Ta7 + Ta8; Taa = T9i - T9l; Tab = T9b - T90; Tac = Taa - Tab; Tas = Taa + Tab; } Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9); Tax = FMA(KP290284677, Tar, KP956940335 * Tas); Tah = FMA(KP881921264, Ta9, KP471396736 * Tac); Tat = FNMS(KP290284677, Tas, KP956940335 * Tar); } { E T9Z, Tae, Tid, Tig; T9Z = T9R - T9Y; Tae = Ta6 + Tad; ci[WS(rs, 20)] = T9Z - Tae; cr[WS(rs, 11)] = T9Z + Tae; Tid = Tad - Ta6; Tig = Tie + Tif; cr[WS(rs, 59)] = Tid - Tig; ci[WS(rs, 36)] = Tid + Tig; } { E Tih, Tii, Taf, Tai; Tih = Tah - Tag; Tii = Tif - Tie; cr[WS(rs, 43)] = Tih - Tii; ci[WS(rs, 52)] = Tih + Tii; Taf = T9R + T9Y; Tai = Tag + Tah; cr[WS(rs, 27)] = Taf - Tai; ci[WS(rs, 4)] = Taf + Tai; } { E Tan, Tau, Ti5, Tia; Tan = Taj + Tam; Tau = Taq + Tat; ci[WS(rs, 28)] = Tan - Tau; cr[WS(rs, 3)] = Tan + Tau; Ti5 = Tax - Taw; Tia = Ti6 + Ti9; cr[WS(rs, 35)] = Ti5 - Tia; ci[WS(rs, 60)] = Ti5 + Tia; } { E Tib, Tic, Tav, Tay; Tib = Tat - Taq; Tic = Ti9 - Ti6; cr[WS(rs, 51)] = Tib - Tic; ci[WS(rs, 44)] = Tib + Tic; Tav = Taj - Tam; Tay = Taw + Tax; cr[WS(rs, 19)] = Tav - Tay; ci[WS(rs, 12)] = Tav + Tay; } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 64}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 64, "hf_64", twinstr, &GENUS, {808, 270, 230, 0} }; void X(codelet_hf_64) (planner *p) { X(khc2hc_register) (p, hf_64, &desc); } #endif