/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:06:43 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cfII_15 -dft-II -include rdft/scalar/r2cfII.h */ /* * This function contains 72 FP additions, 41 FP multiplications, * (or, 38 additions, 7 multiplications, 34 fused multiply/add), * 42 stack variables, 12 constants, and 30 memory accesses */ #include "rdft/scalar/r2cfII.h" static void r2cfII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP823639103, +0.823639103546331925877420039278190003029660514); DK(KP910592997, +0.910592997310029334643087372129977886038870291); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP690983005, +0.690983005625052575897706582817180941139845410); DK(KP447213595, +0.447213595499957939281834733746255247088123672); DK(KP552786404, +0.552786404500042060718165266253744752911876328); DK(KP809016994, +0.809016994374947424102293417182819058860154590); DK(KP618033988, +0.618033988749894848204586834365638117720309180); DK(KP250000000, +0.250000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { E Ta, Tl, T1, T6, T7, TX, TT, T8, Tg, Th, TM, TZ, Tj, Tz, Tr; E Ts, TP, TY, Tu, TC; Ta = R0[WS(rs, 5)]; Tl = R1[WS(rs, 2)]; { E T2, T5, T3, T4, TR, TS; T1 = R0[0]; T2 = R0[WS(rs, 3)]; T5 = R1[WS(rs, 4)]; T3 = R0[WS(rs, 6)]; T4 = R1[WS(rs, 1)]; TR = T2 + T5; TS = T3 + T4; T6 = T2 + T3 - T4 - T5; T7 = FNMS(KP250000000, T6, T1); TX = FNMS(KP618033988, TR, TS); TT = FMA(KP618033988, TS, TR); T8 = (T3 + T5 - T2) - T4; } { E Tf, TL, TK, Ti, Ty; { E Tb, Tc, Td, Te; Tb = R1[0]; Tg = R0[WS(rs, 2)]; Tc = R1[WS(rs, 3)]; Td = R1[WS(rs, 6)]; Te = Tc + Td; Tf = Tb - Te; TL = Tc - Td; Th = Tb + Te; TK = Tg + Tb; } TM = FMA(KP618033988, TL, TK); TZ = FNMS(KP618033988, TK, TL); Ti = FMA(KP809016994, Th, Tg); Tj = FNMS(KP552786404, Ti, Tf); Ty = FMA(KP447213595, Th, Tf); Tz = FNMS(KP690983005, Ty, Tg); } { E Tq, TO, TN, Tt, TB; { E Tm, Tn, To, Tp; Tm = R0[WS(rs, 7)]; Tr = R1[WS(rs, 5)]; Tn = R0[WS(rs, 1)]; To = R0[WS(rs, 4)]; Tp = Tn + To; Tq = Tm - Tp; TO = To - Tn; Ts = Tm + Tp; TN = Tr + Tm; } TP = FMA(KP618033988, TO, TN); TY = FNMS(KP618033988, TN, TO); Tt = FMA(KP809016994, Ts, Tr); Tu = FNMS(KP552786404, Tt, Tq); TB = FMA(KP447213595, Ts, Tq); TC = FNMS(KP690983005, TB, Tr); } { E TF, TG, TH, TI; TF = T1 + T6; TG = Ts - Tr - Tl; TH = Ta + Tg - Th; TI = TG + TH; Cr[WS(csr, 2)] = FNMS(KP500000000, TI, TF); Ci[WS(csi, 2)] = KP866025403 * (TH - TG); Cr[WS(csr, 7)] = TF + TI; } { E Tx, T14, T10, T11, TE, T12, TA, TD, T13; Tx = FMA(KP559016994, T8, T7); T14 = TZ - TY; T10 = TY + TZ; T11 = FMA(KP500000000, T10, TX); TA = FNMS(KP809016994, Tz, Ta); TD = FNMS(KP809016994, TC, Tl); TE = TA - TD; T12 = TD + TA; Cr[WS(csr, 1)] = Tx + TE; Ci[WS(csi, 1)] = KP951056516 * (T10 - TX); Ci[WS(csi, 3)] = KP951056516 * (FNMS(KP910592997, T12, T11)); Ci[WS(csi, 6)] = -(KP951056516 * (FMA(KP910592997, T12, T11))); T13 = FNMS(KP500000000, TE, Tx); Cr[WS(csr, 3)] = FNMS(KP823639103, T14, T13); Cr[WS(csr, 6)] = FMA(KP823639103, T14, T13); } { E T9, TQ, TU, TV, Tw, TW, Tk, Tv, TJ; T9 = FNMS(KP559016994, T8, T7); TQ = TM - TP; TU = TP + TM; TV = FMA(KP500000000, TU, TT); Tk = FNMS(KP559016994, Tj, Ta); Tv = FNMS(KP559016994, Tu, Tl); Tw = Tk - Tv; TW = Tv + Tk; Cr[WS(csr, 4)] = T9 + Tw; Ci[WS(csi, 4)] = KP951056516 * (TT - TU); Ci[0] = -(KP951056516 * (FMA(KP910592997, TW, TV))); Ci[WS(csi, 5)] = -(KP951056516 * (FNMS(KP910592997, TW, TV))); TJ = FNMS(KP500000000, Tw, T9); Cr[WS(csr, 5)] = FNMS(KP823639103, TQ, TJ); Cr[0] = FMA(KP823639103, TQ, TJ); } } } } static const kr2c_desc desc = { 15, "r2cfII_15", {38, 7, 34, 0}, &GENUS }; void X(codelet_r2cfII_15) (planner *p) { X(kr2c_register) (p, r2cfII_15, &desc); } #else /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cfII_15 -dft-II -include rdft/scalar/r2cfII.h */ /* * This function contains 72 FP additions, 33 FP multiplications, * (or, 54 additions, 15 multiplications, 18 fused multiply/add), * 37 stack variables, 8 constants, and 30 memory accesses */ #include "rdft/scalar/r2cfII.h" static void r2cfII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP809016994, +0.809016994374947424102293417182819058860154590); DK(KP309016994, +0.309016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { E T1, T2, Tx, TR, TE, T7, TD, Th, Tm, Tr, TQ, TA, TB, Tf, Te; E Tu, TS, Td, TH, TO; T1 = R0[WS(rs, 5)]; { E T3, Tv, T6, Tw, T4, T5; T2 = R0[WS(rs, 2)]; T3 = R1[0]; Tv = T2 + T3; T4 = R1[WS(rs, 3)]; T5 = R1[WS(rs, 6)]; T6 = T4 + T5; Tw = T4 - T5; Tx = FMA(KP951056516, Tv, KP587785252 * Tw); TR = FNMS(KP587785252, Tv, KP951056516 * Tw); TE = KP559016994 * (T3 - T6); T7 = T3 + T6; TD = KP250000000 * T7; } { E Ti, Tl, Tj, Tk, Tp, Tq; Th = R0[0]; Ti = R1[WS(rs, 4)]; Tl = R0[WS(rs, 6)]; Tj = R1[WS(rs, 1)]; Tk = R0[WS(rs, 3)]; Tp = Tk + Ti; Tq = Tl + Tj; Tm = Ti + Tj - (Tk + Tl); Tr = FMA(KP951056516, Tp, KP587785252 * Tq); TQ = FNMS(KP951056516, Tq, KP587785252 * Tp); TA = FMA(KP250000000, Tm, Th); TB = KP559016994 * (Tl + Ti - (Tk + Tj)); } { E T9, Tt, Tc, Ts, Ta, Tb, TG; Tf = R1[WS(rs, 2)]; T9 = R0[WS(rs, 7)]; Te = R1[WS(rs, 5)]; Tt = T9 + Te; Ta = R0[WS(rs, 1)]; Tb = R0[WS(rs, 4)]; Tc = Ta + Tb; Ts = Ta - Tb; Tu = FNMS(KP951056516, Tt, KP587785252 * Ts); TS = FMA(KP951056516, Ts, KP587785252 * Tt); Td = T9 + Tc; TG = KP559016994 * (T9 - Tc); TH = FNMS(KP309016994, Te, TG) + FNMA(KP250000000, Td, Tf); TO = FMS(KP809016994, Te, Tf) + FNMA(KP250000000, Td, TG); } { E Tn, T8, Tg, To; Tn = Th - Tm; T8 = T1 + T2 - T7; Tg = Td - Te - Tf; To = T8 + Tg; Ci[WS(csi, 2)] = KP866025403 * (T8 - Tg); Cr[WS(csr, 2)] = FNMS(KP500000000, To, Tn); Cr[WS(csr, 7)] = Tn + To; } { E TM, TX, TT, TV, TP, TU, TN, TW; TM = TB + TA; TX = KP866025403 * (TR + TS); TT = TR - TS; TV = FMS(KP500000000, TT, TQ); TN = T1 + TE + FNMS(KP809016994, T2, TD); TP = TN + TO; TU = KP866025403 * (TO - TN); Cr[WS(csr, 1)] = TM + TP; Ci[WS(csi, 1)] = TQ + TT; Ci[WS(csi, 6)] = TU - TV; Ci[WS(csi, 3)] = TU + TV; TW = FNMS(KP500000000, TP, TM); Cr[WS(csr, 3)] = TW - TX; Cr[WS(csr, 6)] = TW + TX; } { E Tz, TC, Ty, TK, TI, TL, TF, TJ; Tz = KP866025403 * (Tx + Tu); TC = TA - TB; Ty = Tu - Tx; TK = FMS(KP500000000, Ty, Tr); TF = FMA(KP309016994, T2, T1) + TD - TE; TI = TF + TH; TL = KP866025403 * (TH - TF); Ci[WS(csi, 4)] = Tr + Ty; Cr[WS(csr, 4)] = TC + TI; Ci[WS(csi, 5)] = TK - TL; Ci[0] = TK + TL; TJ = FNMS(KP500000000, TI, TC); Cr[0] = Tz + TJ; Cr[WS(csr, 5)] = TJ - Tz; } } } } static const kr2c_desc desc = { 15, "r2cfII_15", {54, 15, 18, 0}, &GENUS }; void X(codelet_r2cfII_15) (planner *p) { X(kr2c_register) (p, r2cfII_15, &desc); } #endif