/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:06:43 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -name r2cfII_16 -dft-II -include rdft/scalar/r2cfII.h */ /* * This function contains 66 FP additions, 48 FP multiplications, * (or, 18 additions, 0 multiplications, 48 fused multiply/add), * 32 stack variables, 7 constants, and 32 memory accesses */ #include "rdft/scalar/r2cfII.h" static void r2cfII_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP198912367, +0.198912367379658006911597622644676228597850501); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP668178637, +0.668178637919298919997757686523080761552472251); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) { E T5, TZ, TB, TT, Tr, TK, Tu, TJ, Ti, TH, Tl, TG, Tc, T10, TE; E TU; { E T1, TR, T4, TS, T2, T3; T1 = R0[0]; TR = R0[WS(rs, 4)]; T2 = R0[WS(rs, 2)]; T3 = R0[WS(rs, 6)]; T4 = T2 - T3; TS = T2 + T3; T5 = FNMS(KP707106781, T4, T1); TZ = FNMS(KP707106781, TS, TR); TB = FMA(KP707106781, T4, T1); TT = FMA(KP707106781, TS, TR); } { E Tn, Ts, Tq, Tt, To, Tp; Tn = R1[WS(rs, 7)]; Ts = R1[WS(rs, 3)]; To = R1[WS(rs, 1)]; Tp = R1[WS(rs, 5)]; Tq = To - Tp; Tt = To + Tp; Tr = FMA(KP707106781, Tq, Tn); TK = FMA(KP707106781, Tt, Ts); Tu = FNMS(KP707106781, Tt, Ts); TJ = FMS(KP707106781, Tq, Tn); } { E Te, Tj, Th, Tk, Tf, Tg; Te = R1[0]; Tj = R1[WS(rs, 4)]; Tf = R1[WS(rs, 2)]; Tg = R1[WS(rs, 6)]; Th = Tf - Tg; Tk = Tf + Tg; Ti = FNMS(KP707106781, Th, Te); TH = FMA(KP707106781, Tk, Tj); Tl = FNMS(KP707106781, Tk, Tj); TG = FMA(KP707106781, Th, Te); } { E T8, TC, Tb, TD; { E T6, T7, T9, Ta; T6 = R0[WS(rs, 5)]; T7 = R0[WS(rs, 1)]; T8 = FMA(KP414213562, T7, T6); TC = FNMS(KP414213562, T6, T7); T9 = R0[WS(rs, 3)]; Ta = R0[WS(rs, 7)]; Tb = FMA(KP414213562, Ta, T9); TD = FMS(KP414213562, T9, Ta); } Tc = T8 - Tb; T10 = TD - TC; TE = TC + TD; TU = T8 + Tb; } { E Td, T13, Tw, T14, Tm, Tv; Td = FMA(KP923879532, Tc, T5); T13 = FNMS(KP923879532, T10, TZ); Tm = FMA(KP668178637, Tl, Ti); Tv = FMA(KP668178637, Tu, Tr); Tw = Tm - Tv; T14 = Tm + Tv; Cr[WS(csr, 6)] = FNMS(KP831469612, Tw, Td); Ci[WS(csi, 5)] = FNMS(KP831469612, T14, T13); Cr[WS(csr, 1)] = FMA(KP831469612, Tw, Td); Ci[WS(csi, 2)] = -(FMA(KP831469612, T14, T13)); } { E Tx, T11, TA, T12, Ty, Tz; Tx = FNMS(KP923879532, Tc, T5); T11 = FMA(KP923879532, T10, TZ); Ty = FNMS(KP668178637, Tr, Tu); Tz = FNMS(KP668178637, Ti, Tl); TA = Ty - Tz; T12 = Tz + Ty; Cr[WS(csr, 5)] = FNMS(KP831469612, TA, Tx); Ci[WS(csi, 1)] = FMA(KP831469612, T12, T11); Cr[WS(csr, 2)] = FMA(KP831469612, TA, Tx); Ci[WS(csi, 6)] = FMS(KP831469612, T12, T11); } { E TF, TX, TM, TY, TI, TL; TF = FMA(KP923879532, TE, TB); TX = FNMS(KP923879532, TU, TT); TI = FNMS(KP198912367, TH, TG); TL = FMA(KP198912367, TK, TJ); TM = TI + TL; TY = TL - TI; Cr[WS(csr, 7)] = FNMS(KP980785280, TM, TF); Ci[WS(csi, 3)] = FMA(KP980785280, TY, TX); Cr[0] = FMA(KP980785280, TM, TF); Ci[WS(csi, 4)] = FMS(KP980785280, TY, TX); } { E TN, TV, TQ, TW, TO, TP; TN = FNMS(KP923879532, TE, TB); TV = FMA(KP923879532, TU, TT); TO = FMA(KP198912367, TG, TH); TP = FNMS(KP198912367, TJ, TK); TQ = TO - TP; TW = TO + TP; Cr[WS(csr, 4)] = FNMS(KP980785280, TQ, TN); Ci[WS(csi, 7)] = FNMS(KP980785280, TW, TV); Cr[WS(csr, 3)] = FMA(KP980785280, TQ, TN); Ci[0] = -(FMA(KP980785280, TW, TV)); } } } } static const kr2c_desc desc = { 16, "r2cfII_16", {18, 0, 48, 0}, &GENUS }; void X(codelet_r2cfII_16) (planner *p) { X(kr2c_register) (p, r2cfII_16, &desc); } #else /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 16 -name r2cfII_16 -dft-II -include rdft/scalar/r2cfII.h */ /* * This function contains 66 FP additions, 30 FP multiplications, * (or, 54 additions, 18 multiplications, 12 fused multiply/add), * 32 stack variables, 7 constants, and 32 memory accesses */ #include "rdft/scalar/r2cfII.h" static void r2cfII_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) { E T5, T11, TB, TV, Tr, TK, Tu, TJ, Ti, TH, Tl, TG, Tc, T10, TE; E TS; { E T1, TU, T4, TT, T2, T3; T1 = R0[0]; TU = R0[WS(rs, 4)]; T2 = R0[WS(rs, 2)]; T3 = R0[WS(rs, 6)]; T4 = KP707106781 * (T2 - T3); TT = KP707106781 * (T2 + T3); T5 = T1 + T4; T11 = TU - TT; TB = T1 - T4; TV = TT + TU; } { E Tq, Tt, Tp, Ts, Tn, To; Tq = R1[WS(rs, 7)]; Tt = R1[WS(rs, 3)]; Tn = R1[WS(rs, 1)]; To = R1[WS(rs, 5)]; Tp = KP707106781 * (Tn - To); Ts = KP707106781 * (Tn + To); Tr = Tp - Tq; TK = Tt - Ts; Tu = Ts + Tt; TJ = Tp + Tq; } { E Te, Tk, Th, Tj, Tf, Tg; Te = R1[0]; Tk = R1[WS(rs, 4)]; Tf = R1[WS(rs, 2)]; Tg = R1[WS(rs, 6)]; Th = KP707106781 * (Tf - Tg); Tj = KP707106781 * (Tf + Tg); Ti = Te + Th; TH = Tk - Tj; Tl = Tj + Tk; TG = Te - Th; } { E T8, TC, Tb, TD; { E T6, T7, T9, Ta; T6 = R0[WS(rs, 1)]; T7 = R0[WS(rs, 5)]; T8 = FNMS(KP382683432, T7, KP923879532 * T6); TC = FMA(KP382683432, T6, KP923879532 * T7); T9 = R0[WS(rs, 3)]; Ta = R0[WS(rs, 7)]; Tb = FNMS(KP923879532, Ta, KP382683432 * T9); TD = FMA(KP923879532, T9, KP382683432 * Ta); } Tc = T8 + Tb; T10 = Tb - T8; TE = TC - TD; TS = TC + TD; } { E Td, TW, Tw, TR, Tm, Tv; Td = T5 - Tc; TW = TS + TV; Tm = FMA(KP195090322, Ti, KP980785280 * Tl); Tv = FNMS(KP980785280, Tu, KP195090322 * Tr); Tw = Tm + Tv; TR = Tv - Tm; Cr[WS(csr, 4)] = Td - Tw; Ci[WS(csi, 7)] = TR + TW; Cr[WS(csr, 3)] = Td + Tw; Ci[0] = TR - TW; } { E Tx, TY, TA, TX, Ty, Tz; Tx = T5 + Tc; TY = TV - TS; Ty = FNMS(KP195090322, Tl, KP980785280 * Ti); Tz = FMA(KP980785280, Tr, KP195090322 * Tu); TA = Ty + Tz; TX = Tz - Ty; Cr[WS(csr, 7)] = Tx - TA; Ci[WS(csi, 3)] = TX + TY; Cr[0] = Tx + TA; Ci[WS(csi, 4)] = TX - TY; } { E TF, T12, TM, TZ, TI, TL; TF = TB + TE; T12 = T10 - T11; TI = FMA(KP831469612, TG, KP555570233 * TH); TL = FMA(KP831469612, TJ, KP555570233 * TK); TM = TI - TL; TZ = TI + TL; Cr[WS(csr, 6)] = TF - TM; Ci[WS(csi, 2)] = T12 - TZ; Cr[WS(csr, 1)] = TF + TM; Ci[WS(csi, 5)] = -(TZ + T12); } { E TN, T14, TQ, T13, TO, TP; TN = TB - TE; T14 = T10 + T11; TO = FNMS(KP555570233, TJ, KP831469612 * TK); TP = FNMS(KP555570233, TG, KP831469612 * TH); TQ = TO - TP; T13 = TP + TO; Cr[WS(csr, 5)] = TN - TQ; Ci[WS(csi, 1)] = T13 + T14; Cr[WS(csr, 2)] = TN + TQ; Ci[WS(csi, 6)] = T13 - T14; } } } } static const kr2c_desc desc = { 16, "r2cfII_16", {54, 18, 12, 0}, &GENUS }; void X(codelet_r2cfII_16) (planner *p) { X(kr2c_register) (p, r2cfII_16, &desc); } #endif