/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:06:26 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -name r2cf_10 -include rdft/scalar/r2cf.h */ /* * This function contains 34 FP additions, 14 FP multiplications, * (or, 24 additions, 4 multiplications, 10 fused multiply/add), * 26 stack variables, 4 constants, and 20 memory accesses */ #include "rdft/scalar/r2cf.h" static void r2cf_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); DK(KP951056516, +0.951056516295153572116439333379382143405698634); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { E T3, Tt, Td, Tn, Tg, To, Th, Tv, T6, Tq, T9, Tr, Ta, Tu, T1; E T2; T1 = R0[0]; T2 = R1[WS(rs, 2)]; T3 = T1 - T2; Tt = T1 + T2; { E Tb, Tc, Te, Tf; Tb = R0[WS(rs, 2)]; Tc = R1[WS(rs, 4)]; Td = Tb - Tc; Tn = Tb + Tc; Te = R0[WS(rs, 3)]; Tf = R1[0]; Tg = Te - Tf; To = Te + Tf; } Th = Td + Tg; Tv = Tn + To; { E T4, T5, T7, T8; T4 = R0[WS(rs, 1)]; T5 = R1[WS(rs, 3)]; T6 = T4 - T5; Tq = T4 + T5; T7 = R0[WS(rs, 4)]; T8 = R1[WS(rs, 1)]; T9 = T7 - T8; Tr = T7 + T8; } Ta = T6 + T9; Tu = Tq + Tr; { E Tl, Tm, Tk, Ti, Tj; Tl = T6 - T9; Tm = Tg - Td; Ci[WS(csi, 1)] = -(KP951056516 * (FNMS(KP618033988, Tm, Tl))); Ci[WS(csi, 3)] = KP951056516 * (FMA(KP618033988, Tl, Tm)); Tk = Ta - Th; Ti = Ta + Th; Tj = FNMS(KP250000000, Ti, T3); Cr[WS(csr, 1)] = FMA(KP559016994, Tk, Tj); Cr[WS(csr, 5)] = T3 + Ti; Cr[WS(csr, 3)] = FNMS(KP559016994, Tk, Tj); } { E Tp, Ts, Ty, Tw, Tx; Tp = Tn - To; Ts = Tq - Tr; Ci[WS(csi, 2)] = KP951056516 * (FNMS(KP618033988, Ts, Tp)); Ci[WS(csi, 4)] = KP951056516 * (FMA(KP618033988, Tp, Ts)); Ty = Tu - Tv; Tw = Tu + Tv; Tx = FNMS(KP250000000, Tw, Tt); Cr[WS(csr, 2)] = FNMS(KP559016994, Ty, Tx); Cr[0] = Tt + Tw; Cr[WS(csr, 4)] = FMA(KP559016994, Ty, Tx); } } } } static const kr2c_desc desc = { 10, "r2cf_10", {24, 4, 10, 0}, &GENUS }; void X(codelet_r2cf_10) (planner *p) { X(kr2c_register) (p, r2cf_10, &desc); } #else /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 10 -name r2cf_10 -include rdft/scalar/r2cf.h */ /* * This function contains 34 FP additions, 12 FP multiplications, * (or, 28 additions, 6 multiplications, 6 fused multiply/add), * 26 stack variables, 4 constants, and 20 memory accesses */ #include "rdft/scalar/r2cf.h" static void r2cf_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP587785252, +0.587785252292473129168705954639072768597652438); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { E Ti, Tt, Ta, Tn, Td, To, Te, Tv, T3, Tq, T6, Tr, T7, Tu, Tg; E Th; Tg = R0[0]; Th = R1[WS(rs, 2)]; Ti = Tg - Th; Tt = Tg + Th; { E T8, T9, Tb, Tc; T8 = R0[WS(rs, 2)]; T9 = R1[WS(rs, 4)]; Ta = T8 - T9; Tn = T8 + T9; Tb = R0[WS(rs, 3)]; Tc = R1[0]; Td = Tb - Tc; To = Tb + Tc; } Te = Ta + Td; Tv = Tn + To; { E T1, T2, T4, T5; T1 = R0[WS(rs, 1)]; T2 = R1[WS(rs, 3)]; T3 = T1 - T2; Tq = T1 + T2; T4 = R0[WS(rs, 4)]; T5 = R1[WS(rs, 1)]; T6 = T4 - T5; Tr = T4 + T5; } T7 = T3 + T6; Tu = Tq + Tr; { E Tl, Tm, Tf, Tj, Tk; Tl = Td - Ta; Tm = T3 - T6; Ci[WS(csi, 1)] = FNMS(KP951056516, Tm, KP587785252 * Tl); Ci[WS(csi, 3)] = FMA(KP587785252, Tm, KP951056516 * Tl); Tf = KP559016994 * (T7 - Te); Tj = T7 + Te; Tk = FNMS(KP250000000, Tj, Ti); Cr[WS(csr, 1)] = Tf + Tk; Cr[WS(csr, 5)] = Ti + Tj; Cr[WS(csr, 3)] = Tk - Tf; } { E Tp, Ts, Ty, Tw, Tx; Tp = Tn - To; Ts = Tq - Tr; Ci[WS(csi, 2)] = FNMS(KP587785252, Ts, KP951056516 * Tp); Ci[WS(csi, 4)] = FMA(KP951056516, Ts, KP587785252 * Tp); Ty = KP559016994 * (Tu - Tv); Tw = Tu + Tv; Tx = FNMS(KP250000000, Tw, Tt); Cr[WS(csr, 2)] = Tx - Ty; Cr[0] = Tt + Tw; Cr[WS(csr, 4)] = Ty + Tx; } } } } static const kr2c_desc desc = { 10, "r2cf_10", {28, 6, 6, 0}, &GENUS }; void X(codelet_r2cf_10) (planner *p) { X(kr2c_register) (p, r2cf_10, &desc); } #endif