/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:06:27 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cf_20 -include rdft/scalar/r2cf.h */ /* * This function contains 86 FP additions, 32 FP multiplications, * (or, 58 additions, 4 multiplications, 28 fused multiply/add), * 51 stack variables, 4 constants, and 40 memory accesses */ #include "rdft/scalar/r2cf.h" static void r2cf_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); DK(KP951056516, +0.951056516295153572116439333379382143405698634); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { E T3, T1d, TJ, TV, T16, T1k, T1l, T19, Ta, Th, Ti, T1e, T1f, T1g, TP; E TQ, TX, Tn, Ts, TK, TS, TT, TW, Ty, TD, TL; { E T1, T2, TF, TG, TH, TI; T1 = R0[0]; T2 = R0[WS(rs, 5)]; TF = T1 + T2; TG = R1[WS(rs, 2)]; TH = R1[WS(rs, 7)]; TI = TG + TH; T3 = T1 - T2; T1d = TG - TH; TJ = TF - TI; TV = TF + TI; } { E T6, To, Tx, T17, TC, T18, T9, Tj, Td, Tu, Tm, T15, Tr, T14, Tg; E Tz; { E T4, T5, Tv, Tw; T4 = R0[WS(rs, 2)]; T5 = R0[WS(rs, 7)]; T6 = T4 - T5; To = T4 + T5; Tv = R1[WS(rs, 6)]; Tw = R1[WS(rs, 1)]; Tx = Tv + Tw; T17 = Tw - Tv; } { E TA, TB, T7, T8; TA = R1[WS(rs, 8)]; TB = R1[WS(rs, 3)]; TC = TA + TB; T18 = TB - TA; T7 = R0[WS(rs, 8)]; T8 = R0[WS(rs, 3)]; T9 = T7 - T8; Tj = T7 + T8; } { E Tb, Tc, Tk, Tl; Tb = R0[WS(rs, 4)]; Tc = R0[WS(rs, 9)]; Td = Tb - Tc; Tu = Tb + Tc; Tk = R1[0]; Tl = R1[WS(rs, 5)]; Tm = Tk + Tl; T15 = Tl - Tk; } { E Tp, Tq, Te, Tf; Tp = R1[WS(rs, 4)]; Tq = R1[WS(rs, 9)]; Tr = Tp + Tq; T14 = Tq - Tp; Te = R0[WS(rs, 6)]; Tf = R0[WS(rs, 1)]; Tg = Te - Tf; Tz = Te + Tf; } T16 = T14 - T15; T1k = T6 - T9; T1l = Td - Tg; T19 = T17 - T18; Ta = T6 + T9; Th = Td + Tg; Ti = Ta + Th; T1e = T14 + T15; T1f = T17 + T18; T1g = T1e + T1f; TP = Tu + Tx; TQ = Tz + TC; TX = TP + TQ; Tn = Tj - Tm; Ts = To - Tr; TK = Ts + Tn; TS = To + Tr; TT = Tj + Tm; TW = TS + TT; Ty = Tu - Tx; TD = Tz - TC; TL = Ty + TD; } Cr[WS(csr, 5)] = T3 + Ti; Ci[WS(csi, 5)] = T1g - T1d; { E Tt, TE, TR, TU; Tt = Tn - Ts; TE = Ty - TD; Ci[WS(csi, 6)] = KP951056516 * (FNMS(KP618033988, TE, Tt)); Ci[WS(csi, 2)] = KP951056516 * (FMA(KP618033988, Tt, TE)); TR = TP - TQ; TU = TS - TT; Ci[WS(csi, 8)] = -(KP951056516 * (FNMS(KP618033988, TU, TR))); Ci[WS(csi, 4)] = KP951056516 * (FMA(KP618033988, TR, TU)); } { E T10, TY, TZ, TO, TM, TN; T10 = TW - TX; TY = TW + TX; TZ = FNMS(KP250000000, TY, TV); Cr[WS(csr, 4)] = FMA(KP559016994, T10, TZ); Cr[0] = TV + TY; Cr[WS(csr, 8)] = FNMS(KP559016994, T10, TZ); TO = TK - TL; TM = TK + TL; TN = FNMS(KP250000000, TM, TJ); Cr[WS(csr, 2)] = FNMS(KP559016994, TO, TN); Cr[WS(csr, 10)] = TJ + TM; Cr[WS(csr, 6)] = FMA(KP559016994, TO, TN); } { E T1a, T1c, T13, T1b, T11, T12; T1a = FMA(KP618033988, T19, T16); T1c = FNMS(KP618033988, T16, T19); T11 = FNMS(KP250000000, Ti, T3); T12 = Ta - Th; T13 = FMA(KP559016994, T12, T11); T1b = FNMS(KP559016994, T12, T11); Cr[WS(csr, 9)] = FNMS(KP951056516, T1a, T13); Cr[WS(csr, 7)] = FMA(KP951056516, T1c, T1b); Cr[WS(csr, 1)] = FMA(KP951056516, T1a, T13); Cr[WS(csr, 3)] = FNMS(KP951056516, T1c, T1b); } { E T1m, T1o, T1j, T1n, T1h, T1i; T1m = FMA(KP618033988, T1l, T1k); T1o = FNMS(KP618033988, T1k, T1l); T1h = FMA(KP250000000, T1g, T1d); T1i = T1e - T1f; T1j = FNMS(KP559016994, T1i, T1h); T1n = FMA(KP559016994, T1i, T1h); Ci[WS(csi, 1)] = -(FMA(KP951056516, T1m, T1j)); Ci[WS(csi, 7)] = FMA(KP951056516, T1o, T1n); Ci[WS(csi, 9)] = FMS(KP951056516, T1m, T1j); Ci[WS(csi, 3)] = FNMS(KP951056516, T1o, T1n); } } } } static const kr2c_desc desc = { 20, "r2cf_20", {58, 4, 28, 0}, &GENUS }; void X(codelet_r2cf_20) (planner *p) { X(kr2c_register) (p, r2cf_20, &desc); } #else /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cf_20 -include rdft/scalar/r2cf.h */ /* * This function contains 86 FP additions, 24 FP multiplications, * (or, 74 additions, 12 multiplications, 12 fused multiply/add), * 51 stack variables, 4 constants, and 40 memory accesses */ #include "rdft/scalar/r2cf.h" static void r2cf_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { E T3, T1m, TF, T17, Ts, TM, TN, Tz, Ta, Th, Ti, T1g, T1h, T1k, T10; E T13, T19, TG, TH, TI, T1d, T1e, T1j, TT, TW, T18; { E T1, T2, T15, TD, TE, T16; T1 = R0[0]; T2 = R0[WS(rs, 5)]; T15 = T1 + T2; TD = R1[WS(rs, 7)]; TE = R1[WS(rs, 2)]; T16 = TE + TD; T3 = T1 - T2; T1m = T15 + T16; TF = TD - TE; T17 = T15 - T16; } { E T6, TU, Tv, T12, Ty, TZ, T9, TR, Td, TY, To, TS, Tr, TV, Tg; E T11; { E T4, T5, Tt, Tu; T4 = R0[WS(rs, 2)]; T5 = R0[WS(rs, 7)]; T6 = T4 - T5; TU = T4 + T5; Tt = R1[WS(rs, 8)]; Tu = R1[WS(rs, 3)]; Tv = Tt - Tu; T12 = Tt + Tu; } { E Tw, Tx, T7, T8; Tw = R1[WS(rs, 6)]; Tx = R1[WS(rs, 1)]; Ty = Tw - Tx; TZ = Tw + Tx; T7 = R0[WS(rs, 8)]; T8 = R0[WS(rs, 3)]; T9 = T7 - T8; TR = T7 + T8; } { E Tb, Tc, Tm, Tn; Tb = R0[WS(rs, 4)]; Tc = R0[WS(rs, 9)]; Td = Tb - Tc; TY = Tb + Tc; Tm = R1[0]; Tn = R1[WS(rs, 5)]; To = Tm - Tn; TS = Tm + Tn; } { E Tp, Tq, Te, Tf; Tp = R1[WS(rs, 4)]; Tq = R1[WS(rs, 9)]; Tr = Tp - Tq; TV = Tp + Tq; Te = R0[WS(rs, 6)]; Tf = R0[WS(rs, 1)]; Tg = Te - Tf; T11 = Te + Tf; } Ts = To - Tr; TM = T6 - T9; TN = Td - Tg; Tz = Tv - Ty; Ta = T6 + T9; Th = Td + Tg; Ti = Ta + Th; T1g = TY + TZ; T1h = T11 + T12; T1k = T1g + T1h; T10 = TY - TZ; T13 = T11 - T12; T19 = T10 + T13; TG = Tr + To; TH = Ty + Tv; TI = TG + TH; T1d = TU + TV; T1e = TR + TS; T1j = T1d + T1e; TT = TR - TS; TW = TU - TV; T18 = TW + TT; } Cr[WS(csr, 5)] = T3 + Ti; Ci[WS(csi, 5)] = TF - TI; { E TX, T14, T1f, T1i; TX = TT - TW; T14 = T10 - T13; Ci[WS(csi, 6)] = FNMS(KP587785252, T14, KP951056516 * TX); Ci[WS(csi, 2)] = FMA(KP587785252, TX, KP951056516 * T14); T1f = T1d - T1e; T1i = T1g - T1h; Ci[WS(csi, 8)] = FNMS(KP951056516, T1i, KP587785252 * T1f); Ci[WS(csi, 4)] = FMA(KP951056516, T1f, KP587785252 * T1i); } { E T1l, T1n, T1o, T1c, T1a, T1b; T1l = KP559016994 * (T1j - T1k); T1n = T1j + T1k; T1o = FNMS(KP250000000, T1n, T1m); Cr[WS(csr, 4)] = T1l + T1o; Cr[0] = T1m + T1n; Cr[WS(csr, 8)] = T1o - T1l; T1c = KP559016994 * (T18 - T19); T1a = T18 + T19; T1b = FNMS(KP250000000, T1a, T17); Cr[WS(csr, 2)] = T1b - T1c; Cr[WS(csr, 10)] = T17 + T1a; Cr[WS(csr, 6)] = T1c + T1b; } { E TA, TC, Tl, TB, Tj, Tk; TA = FMA(KP951056516, Ts, KP587785252 * Tz); TC = FNMS(KP587785252, Ts, KP951056516 * Tz); Tj = KP559016994 * (Ta - Th); Tk = FNMS(KP250000000, Ti, T3); Tl = Tj + Tk; TB = Tk - Tj; Cr[WS(csr, 9)] = Tl - TA; Cr[WS(csr, 7)] = TB + TC; Cr[WS(csr, 1)] = Tl + TA; Cr[WS(csr, 3)] = TB - TC; } { E TO, TQ, TL, TP, TJ, TK; TO = FMA(KP951056516, TM, KP587785252 * TN); TQ = FNMS(KP587785252, TM, KP951056516 * TN); TJ = FMA(KP250000000, TI, TF); TK = KP559016994 * (TH - TG); TL = TJ + TK; TP = TK - TJ; Ci[WS(csi, 1)] = TL - TO; Ci[WS(csi, 7)] = TQ + TP; Ci[WS(csi, 9)] = TO + TL; Ci[WS(csi, 3)] = TP - TQ; } } } } static const kr2c_desc desc = { 20, "r2cf_20", {74, 12, 12, 0}, &GENUS }; void X(codelet_r2cf_20) (planner *p) { X(kr2c_register) (p, r2cf_20, &desc); } #endif