/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:08:11 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include rdft/simd/hc2cbv.h */ /* * This function contains 71 FP additions, 51 FP multiplications, * (or, 45 additions, 25 multiplications, 26 fused multiply/add), * 56 stack variables, 2 constants, and 24 memory accesses */ #include "rdft/simd/hc2cbv.h" static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) { V Tk, Tw, Td, TA, T11, T1f, TF, TP, Tt, TB, TY, T1e; { V T2, Tm, T7, T8, Tp, Tq, T5, Tu, Tg, Tr, Tj, Tn, Tb, Tv, T3; V T4, Te, Tf, Th, Ti, T9, Ta, T6, Tc, TZ, T10, TD, TE, To, Ts; V TW, TX; T2 = LD(&(Rp[0]), ms, &(Rp[0])); Tm = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); T8 = VCONJ(T7); Tp = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); Tq = VCONJ(Tp); T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); T5 = VFMACONJ(T4, T3); Tu = VFNMSCONJ(T4, T3); Te = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); Tf = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); Tg = VSUB(Te, Tf); Tr = VADD(Te, Tf); Th = LD(&(Rm[0]), -ms, &(Rm[0])); Ti = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); Tj = VSUB(Th, Ti); Tn = VADD(Ti, Th); T9 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); Tb = VFMACONJ(Ta, T9); Tv = VFMSCONJ(Ta, T9); Tk = VFMACONJ(Tj, Tg); Tw = VSUB(Tu, Tv); T6 = VFNMS(LDK(KP500000000), T5, T2); Tc = VFNMS(LDK(KP500000000), Tb, T8); Td = VSUB(T6, Tc); TA = VADD(T6, Tc); TZ = VFMACONJ(Tn, Tm); T10 = VFMACONJ(Tp, Tr); T11 = VSUB(TZ, T10); T1f = VADD(TZ, T10); TD = VFNMSCONJ(Tj, Tg); TE = VADD(Tu, Tv); TF = VMUL(LDK(KP866025403), VSUB(TD, TE)); TP = VMUL(LDK(KP866025403), VADD(TE, TD)); To = VFNMS(LDK(KP500000000), VCONJ(Tn), Tm); Ts = VFNMS(LDK(KP500000000), Tr, Tq); Tt = VSUB(To, Ts); TB = VADD(To, Ts); TW = VADD(T2, T5); TX = VFMACONJ(T7, Tb); TY = VSUB(TW, TX); T1e = VADD(TW, TX); } { V T1l, T12, TG, TU, Ty, T1k, TV, TC, Tz, TT, Tl, Tx, T1, T1j, TH; V TI, T1n, T1m, T14, T13, T18, T1g, TQ, T16, TM, T1c, T17, T1d, TO, TN; V T15, TK, TL, TJ, T1b, TR, TS, T1i, T1h, T1a, T19; T1l = VADD(T1e, T1f); TV = LDW(&(W[TWVL * 4])); T12 = VZMULI(TV, VFNMSI(T11, TY)); TC = VSUB(TA, TB); Tz = LDW(&(W[TWVL * 18])); TG = VZMUL(Tz, VFNMSI(TF, TC)); TT = LDW(&(W[TWVL * 2])); TU = VZMUL(TT, VFMAI(TF, TC)); Tl = VFMA(LDK(KP866025403), Tk, Td); Tx = VFMA(LDK(KP866025403), Tw, Tt); T1 = LDW(&(W[TWVL * 20])); Ty = VZMULI(T1, VFNMSI(Tx, Tl)); T1j = LDW(&(W[0])); T1k = VZMULI(T1j, VFMAI(Tx, Tl)); TH = VADD(Ty, TG); ST(&(Rp[WS(rs, 5)]), TH, ms, &(Rp[WS(rs, 1)])); TI = VCONJ(VSUB(TG, Ty)); ST(&(Rm[WS(rs, 5)]), TI, -ms, &(Rm[WS(rs, 1)])); T1n = VCONJ(VSUB(T1l, T1k)); ST(&(Rm[0]), T1n, -ms, &(Rm[0])); T1m = VADD(T1k, T1l); ST(&(Rp[0]), T1m, ms, &(Rp[0])); T14 = VADD(TU, T12); ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)])); T13 = VCONJ(VSUB(TU, T12)); ST(&(Rm[WS(rs, 1)]), T13, -ms, &(Rm[WS(rs, 1)])); T17 = LDW(&(W[TWVL * 16])); T18 = VZMULI(T17, VFMAI(T11, TY)); T1d = LDW(&(W[TWVL * 10])); T1g = VZMUL(T1d, VSUB(T1e, T1f)); TO = VADD(TA, TB); TN = LDW(&(W[TWVL * 6])); TQ = VZMUL(TN, VFMAI(TP, TO)); T15 = LDW(&(W[TWVL * 14])); T16 = VZMUL(T15, VFNMSI(TP, TO)); TK = VFNMS(LDK(KP866025403), Tk, Td); TL = VFNMS(LDK(KP866025403), Tw, Tt); TJ = LDW(&(W[TWVL * 8])); TM = VZMULI(TJ, VFMAI(TL, TK)); T1b = LDW(&(W[TWVL * 12])); T1c = VZMULI(T1b, VFNMSI(TL, TK)); TR = VADD(TM, TQ); ST(&(Rp[WS(rs, 2)]), TR, ms, &(Rp[0])); TS = VCONJ(VSUB(TQ, TM)); ST(&(Rm[WS(rs, 2)]), TS, -ms, &(Rm[0])); T1i = VCONJ(VSUB(T1g, T1c)); ST(&(Rm[WS(rs, 3)]), T1i, -ms, &(Rm[WS(rs, 1)])); T1h = VADD(T1c, T1g); ST(&(Rp[WS(rs, 3)]), T1h, ms, &(Rp[WS(rs, 1)])); T1a = VADD(T16, T18); ST(&(Rp[WS(rs, 4)]), T1a, ms, &(Rp[0])); T19 = VCONJ(VSUB(T16, T18)); ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), VTW(1, 4), VTW(1, 5), VTW(1, 6), VTW(1, 7), VTW(1, 8), VTW(1, 9), VTW(1, 10), VTW(1, 11), {TW_NEXT, VL, 0} }; static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, {45, 25, 26, 0} }; void XSIMD(codelet_hc2cbdftv_12) (planner *p) { X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include rdft/simd/hc2cbv.h */ /* * This function contains 71 FP additions, 30 FP multiplications, * (or, 67 additions, 26 multiplications, 4 fused multiply/add), * 90 stack variables, 2 constants, and 24 memory accesses */ #include "rdft/simd/hc2cbv.h" static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) { V TY, TZ, Tf, TC, Tq, TG, Tm, TF, Ty, TD, T13, T1h, T2, T9, T3; V T5, T6, Tc, Tb, Td, T8, T4, Ta, T7, Te, To, Tp, Tr, Tv, Ti; V Ts, Tl, Tw, Tu, Tg, Th, Tj, Tk, Tt, Tx, T11, T12; T2 = LD(&(Rp[0]), ms, &(Rp[0])); T8 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); T9 = VCONJ(T8); T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); T5 = VCONJ(T4); T6 = VADD(T3, T5); Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); Tb = VCONJ(Ta); Td = VADD(Tb, Tc); TY = VADD(T2, T6); TZ = VADD(T9, Td); T7 = VFNMS(LDK(KP500000000), T6, T2); Te = VFNMS(LDK(KP500000000), Td, T9); Tf = VSUB(T7, Te); TC = VADD(T7, Te); To = VSUB(T3, T5); Tp = VSUB(Tb, Tc); Tq = VMUL(LDK(KP866025403), VSUB(To, Tp)); TG = VADD(To, Tp); Tr = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); Tu = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); Tv = VCONJ(Tu); Tg = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); Th = LD(&(Rm[0]), -ms, &(Rm[0])); Ti = VCONJ(VSUB(Tg, Th)); Ts = VCONJ(VADD(Tg, Th)); Tj = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); Tk = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); Tl = VSUB(Tj, Tk); Tw = VADD(Tj, Tk); Tm = VMUL(LDK(KP866025403), VSUB(Ti, Tl)); TF = VADD(Ti, Tl); Tt = VFNMS(LDK(KP500000000), Ts, Tr); Tx = VFNMS(LDK(KP500000000), Tw, Tv); Ty = VSUB(Tt, Tx); TD = VADD(Tt, Tx); T11 = VADD(Tr, Ts); T12 = VADD(Tv, Tw); T13 = VBYI(VSUB(T11, T12)); T1h = VADD(T11, T12); { V T1n, T1i, T14, T1a, TA, T1m, TS, T18, TO, T1e, TI, TW, T1g, T1f, T10; V TX, T19, Tn, Tz, T1, T1l, TQ, TR, TP, T17, TM, TN, TL, T1d, TE; V TH, TB, TV, TJ, T1p, T1k, TT, T1o, TK, TU, T1j, T1b, T16, T1c, T15; T1g = VADD(TY, TZ); T1n = VADD(T1g, T1h); T1f = LDW(&(W[TWVL * 10])); T1i = VZMUL(T1f, VSUB(T1g, T1h)); T10 = VSUB(TY, TZ); TX = LDW(&(W[TWVL * 4])); T14 = VZMULI(TX, VSUB(T10, T13)); T19 = LDW(&(W[TWVL * 16])); T1a = VZMULI(T19, VADD(T10, T13)); Tn = VSUB(Tf, Tm); Tz = VBYI(VADD(Tq, Ty)); T1 = LDW(&(W[TWVL * 20])); TA = VZMULI(T1, VSUB(Tn, Tz)); T1l = LDW(&(W[0])); T1m = VZMULI(T1l, VADD(Tn, Tz)); TQ = VBYI(VMUL(LDK(KP866025403), VADD(TG, TF))); TR = VADD(TC, TD); TP = LDW(&(W[TWVL * 6])); TS = VZMUL(TP, VADD(TQ, TR)); T17 = LDW(&(W[TWVL * 14])); T18 = VZMUL(T17, VSUB(TR, TQ)); TM = VADD(Tf, Tm); TN = VBYI(VSUB(Ty, Tq)); TL = LDW(&(W[TWVL * 8])); TO = VZMULI(TL, VADD(TM, TN)); T1d = LDW(&(W[TWVL * 12])); T1e = VZMULI(T1d, VSUB(TM, TN)); TE = VSUB(TC, TD); TH = VBYI(VMUL(LDK(KP866025403), VSUB(TF, TG))); TB = LDW(&(W[TWVL * 18])); TI = VZMUL(TB, VSUB(TE, TH)); TV = LDW(&(W[TWVL * 2])); TW = VZMUL(TV, VADD(TH, TE)); TJ = VADD(TA, TI); ST(&(Rp[WS(rs, 5)]), TJ, ms, &(Rp[WS(rs, 1)])); T1p = VCONJ(VSUB(T1n, T1m)); ST(&(Rm[0]), T1p, -ms, &(Rm[0])); T1k = VCONJ(VSUB(T1i, T1e)); ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)])); TT = VADD(TO, TS); ST(&(Rp[WS(rs, 2)]), TT, ms, &(Rp[0])); T1o = VADD(T1m, T1n); ST(&(Rp[0]), T1o, ms, &(Rp[0])); TK = VCONJ(VSUB(TI, TA)); ST(&(Rm[WS(rs, 5)]), TK, -ms, &(Rm[WS(rs, 1)])); TU = VCONJ(VSUB(TS, TO)); ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0])); T1j = VADD(T1e, T1i); ST(&(Rp[WS(rs, 3)]), T1j, ms, &(Rp[WS(rs, 1)])); T1b = VCONJ(VSUB(T18, T1a)); ST(&(Rm[WS(rs, 4)]), T1b, -ms, &(Rm[0])); T16 = VADD(TW, T14); ST(&(Rp[WS(rs, 1)]), T16, ms, &(Rp[WS(rs, 1)])); T1c = VADD(T18, T1a); ST(&(Rp[WS(rs, 4)]), T1c, ms, &(Rp[0])); T15 = VCONJ(VSUB(TW, T14)); ST(&(Rm[WS(rs, 1)]), T15, -ms, &(Rm[WS(rs, 1)])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), VTW(1, 4), VTW(1, 5), VTW(1, 6), VTW(1, 7), VTW(1, 8), VTW(1, 9), VTW(1, 10), VTW(1, 11), {TW_NEXT, VL, 0} }; static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, {67, 26, 4, 0} }; void XSIMD(codelet_hc2cbdftv_12) (planner *p) { X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT); } #endif