/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:08:11 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include rdft/simd/hc2cbv.h */ /* * This function contains 41 FP additions, 32 FP multiplications, * (or, 23 additions, 14 multiplications, 18 fused multiply/add), * 51 stack variables, 1 constants, and 16 memory accesses */ #include "rdft/simd/hc2cbv.h" static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) { V Tm, Tp, TF, TE, Th, Tv, Tc, Tu, T4, Tk, Tf, Tl, T7, Tn, Ta; V To, T2, T3, Td, Te, T5, T6, T8, T9, Tg, Tb, TL, TK, TJ, TM; V TN, TC, TG, TB, TD, TH, TI, Ti, Tq, T1, Tj, Tr, Ts, Tw, Ty; V Tt, Tx, Tz, TA; T2 = LD(&(Rp[0]), ms, &(Rp[0])); T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); T4 = VFNMSCONJ(T3, T2); Tk = VFMACONJ(T3, T2); Td = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); Te = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); Tf = VFNMSCONJ(Te, Td); Tl = VFMACONJ(Te, Td); T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); T7 = VFNMSCONJ(T6, T5); Tn = VFMACONJ(T6, T5); T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); T9 = LD(&(Rm[0]), -ms, &(Rm[0])); Ta = VFMSCONJ(T9, T8); To = VFMACONJ(T9, T8); Tm = VSUB(Tk, Tl); Tp = VSUB(Tn, To); TF = VADD(Tn, To); TE = VADD(Tk, Tl); Tg = VSUB(T7, Ta); Th = VFMA(LDK(KP707106781), Tg, Tf); Tv = VFNMS(LDK(KP707106781), Tg, Tf); Tb = VADD(T7, Ta); Tc = VFMA(LDK(KP707106781), Tb, T4); Tu = VFNMS(LDK(KP707106781), Tb, T4); TL = VADD(TE, TF); TJ = LDW(&(W[0])); TK = VZMULI(TJ, VFMAI(Th, Tc)); TM = VADD(TK, TL); ST(&(Rp[0]), TM, ms, &(Rp[0])); TN = VCONJ(VSUB(TL, TK)); ST(&(Rm[0]), TN, -ms, &(Rm[0])); TB = LDW(&(W[TWVL * 8])); TC = VZMULI(TB, VFMAI(Tv, Tu)); TD = LDW(&(W[TWVL * 6])); TG = VZMUL(TD, VSUB(TE, TF)); TH = VADD(TC, TG); ST(&(Rp[WS(rs, 2)]), TH, ms, &(Rp[0])); TI = VCONJ(VSUB(TG, TC)); ST(&(Rm[WS(rs, 2)]), TI, -ms, &(Rm[0])); T1 = LDW(&(W[TWVL * 12])); Ti = VZMULI(T1, VFNMSI(Th, Tc)); Tj = LDW(&(W[TWVL * 10])); Tq = VZMUL(Tj, VFNMSI(Tp, Tm)); Tr = VADD(Ti, Tq); ST(&(Rp[WS(rs, 3)]), Tr, ms, &(Rp[WS(rs, 1)])); Ts = VCONJ(VSUB(Tq, Ti)); ST(&(Rm[WS(rs, 3)]), Ts, -ms, &(Rm[WS(rs, 1)])); Tt = LDW(&(W[TWVL * 4])); Tw = VZMULI(Tt, VFNMSI(Tv, Tu)); Tx = LDW(&(W[TWVL * 2])); Ty = VZMUL(Tx, VFMAI(Tp, Tm)); Tz = VADD(Tw, Ty); ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)])); TA = VCONJ(VSUB(Ty, Tw)); ST(&(Rm[WS(rs, 1)]), TA, -ms, &(Rm[WS(rs, 1)])); } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), VTW(1, 4), VTW(1, 5), VTW(1, 6), VTW(1, 7), {TW_NEXT, VL, 0} }; static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, {23, 14, 18, 0} }; void XSIMD(codelet_hc2cbdftv_8) (planner *p) { X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include rdft/simd/hc2cbv.h */ /* * This function contains 41 FP additions, 16 FP multiplications, * (or, 41 additions, 16 multiplications, 0 fused multiply/add), * 55 stack variables, 1 constants, and 16 memory accesses */ #include "rdft/simd/hc2cbv.h" static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) { V T5, Tj, Tq, TI, Te, Tk, Tt, TJ, T2, Tg, T4, Ti, T3, Th, To; V Tp, T6, Tc, T8, Tb, T7, Ta, T9, Td, Tr, Ts, TP, Tu, Tm, TO; V Tn, Tf, Tl, T1, TN, Tv, TR, Tw, TQ, TC, TK, TA, TG, TB, TH; V Ty, Tz, Tx, TF, TD, TM, TE, TL; T2 = LD(&(Rp[0]), ms, &(Rp[0])); Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); T4 = VCONJ(T3); Th = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); Ti = VCONJ(Th); T5 = VSUB(T2, T4); Tj = VSUB(Tg, Ti); To = VADD(T2, T4); Tp = VADD(Tg, Ti); Tq = VSUB(To, Tp); TI = VADD(To, Tp); T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); T8 = VCONJ(T7); Ta = LD(&(Rm[0]), -ms, &(Rm[0])); Tb = VCONJ(Ta); T9 = VSUB(T6, T8); Td = VSUB(Tb, Tc); Te = VMUL(LDK(KP707106781), VADD(T9, Td)); Tk = VMUL(LDK(KP707106781), VSUB(T9, Td)); Tr = VADD(T6, T8); Ts = VADD(Tb, Tc); Tt = VBYI(VSUB(Tr, Ts)); TJ = VADD(Tr, Ts); TP = VADD(TI, TJ); Tn = LDW(&(W[TWVL * 10])); Tu = VZMUL(Tn, VSUB(Tq, Tt)); Tf = VADD(T5, Te); Tl = VBYI(VADD(Tj, Tk)); T1 = LDW(&(W[TWVL * 12])); Tm = VZMULI(T1, VSUB(Tf, Tl)); TN = LDW(&(W[0])); TO = VZMULI(TN, VADD(Tl, Tf)); Tv = VADD(Tm, Tu); ST(&(Rp[WS(rs, 3)]), Tv, ms, &(Rp[WS(rs, 1)])); TR = VCONJ(VSUB(TP, TO)); ST(&(Rm[0]), TR, -ms, &(Rm[0])); Tw = VCONJ(VSUB(Tu, Tm)); ST(&(Rm[WS(rs, 3)]), Tw, -ms, &(Rm[WS(rs, 1)])); TQ = VADD(TO, TP); ST(&(Rp[0]), TQ, ms, &(Rp[0])); TB = LDW(&(W[TWVL * 2])); TC = VZMUL(TB, VADD(Tq, Tt)); TH = LDW(&(W[TWVL * 6])); TK = VZMUL(TH, VSUB(TI, TJ)); Ty = VBYI(VSUB(Tk, Tj)); Tz = VSUB(T5, Te); Tx = LDW(&(W[TWVL * 4])); TA = VZMULI(Tx, VADD(Ty, Tz)); TF = LDW(&(W[TWVL * 8])); TG = VZMULI(TF, VSUB(Tz, Ty)); TD = VADD(TA, TC); ST(&(Rp[WS(rs, 1)]), TD, ms, &(Rp[WS(rs, 1)])); TM = VCONJ(VSUB(TK, TG)); ST(&(Rm[WS(rs, 2)]), TM, -ms, &(Rm[0])); TE = VCONJ(VSUB(TC, TA)); ST(&(Rm[WS(rs, 1)]), TE, -ms, &(Rm[WS(rs, 1)])); TL = VADD(TG, TK); ST(&(Rp[WS(rs, 2)]), TL, ms, &(Rp[0])); } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), VTW(1, 4), VTW(1, 5), VTW(1, 6), VTW(1, 7), {TW_NEXT, VL, 0} }; static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, {41, 16, 0, 0} }; void XSIMD(codelet_hc2cbdftv_8) (planner *p) { X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT); } #endif