/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:08:11 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include rdft/simd/hc2cfv.h */ /* * This function contains 15 FP additions, 16 FP multiplications, * (or, 9 additions, 10 multiplications, 6 fused multiply/add), * 21 stack variables, 1 constants, and 8 memory accesses */ #include "rdft/simd/hc2cfv.h" static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) { V T8, Th, Td, Tg, T3, Tc, T7, Ta, T1, T2, Tb, T5, T6, T4, T9; V Te, Tj, Tf, Ti; T1 = LD(&(Rp[0]), ms, &(Rp[0])); T2 = LD(&(Rm[0]), -ms, &(Rm[0])); T3 = VFMACONJ(T2, T1); Tb = LDW(&(W[0])); Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1)); T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); T4 = LDW(&(W[TWVL * 2])); T7 = VZMULJ(T4, VFMACONJ(T6, T5)); T9 = LDW(&(W[TWVL * 4])); Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5)); T8 = VSUB(T3, T7); Th = VADD(Tc, Ta); Td = VSUB(Ta, Tc); Tg = VADD(T3, T7); Te = VMUL(LDK(KP500000000), VFNMSI(Td, T8)); ST(&(Rp[WS(rs, 1)]), Te, ms, &(Rp[WS(rs, 1)])); Tj = VCONJ(VMUL(LDK(KP500000000), VADD(Th, Tg))); ST(&(Rm[WS(rs, 1)]), Tj, -ms, &(Rm[WS(rs, 1)])); Tf = VCONJ(VMUL(LDK(KP500000000), VFMAI(Td, T8))); ST(&(Rm[0]), Tf, -ms, &(Rm[0])); Ti = VMUL(LDK(KP500000000), VSUB(Tg, Th)); ST(&(Rp[0]), Ti, ms, &(Rp[0])); } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), {TW_NEXT, VL, 0} }; static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {9, 10, 6, 0} }; void XSIMD(codelet_hc2cfdftv_4) (planner *p) { X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include rdft/simd/hc2cfv.h */ /* * This function contains 15 FP additions, 10 FP multiplications, * (or, 15 additions, 10 multiplications, 0 fused multiply/add), * 23 stack variables, 1 constants, and 8 memory accesses */ #include "rdft/simd/hc2cfv.h" static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) { V T4, Tc, T9, Te, T1, T3, T2, Tb, T6, T8, T7, T5, Td, Tg, Th; V Ta, Tf, Tk, Tl, Ti, Tj; T1 = LD(&(Rp[0]), ms, &(Rp[0])); T2 = LD(&(Rm[0]), -ms, &(Rm[0])); T3 = VCONJ(T2); T4 = VADD(T1, T3); Tb = LDW(&(W[0])); Tc = VZMULIJ(Tb, VSUB(T3, T1)); T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); T7 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); T8 = VCONJ(T7); T5 = LDW(&(W[TWVL * 2])); T9 = VZMULJ(T5, VADD(T6, T8)); Td = LDW(&(W[TWVL * 4])); Te = VZMULIJ(Td, VSUB(T8, T6)); Ta = VSUB(T4, T9); Tf = VBYI(VSUB(Tc, Te)); Tg = VMUL(LDK(KP500000000), VSUB(Ta, Tf)); Th = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, Tf))); ST(&(Rp[WS(rs, 1)]), Tg, ms, &(Rp[WS(rs, 1)])); ST(&(Rm[0]), Th, -ms, &(Rm[0])); Ti = VADD(T4, T9); Tj = VADD(Tc, Te); Tk = VCONJ(VMUL(LDK(KP500000000), VSUB(Ti, Tj))); Tl = VMUL(LDK(KP500000000), VADD(Ti, Tj)); ST(&(Rm[WS(rs, 1)]), Tk, -ms, &(Rm[WS(rs, 1)])); ST(&(Rp[0]), Tl, ms, &(Rp[0])); } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(1, 1), VTW(1, 2), VTW(1, 3), {TW_NEXT, VL, 0} }; static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {15, 10, 0, 0} }; void XSIMD(codelet_hc2cfdftv_4) (planner *p) { X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT); } #endif