[![Crate](https://img.shields.io/crates/v/finalfrontier.svg)](https://crates.io/crates/finalfrontier) [![Docs](https://docs.rs/finalfrontier/badge.svg)](https://docs.rs/finalfrontier/) [![Build Status](https://travis-ci.org/finalfusion/finalfrontier.svg?branch=master)](https://travis-ci.org/finalfusion/finalfrontier) # finalfrontier ## Introduction finalfrontier is a Rust program for training word embeddings. finalfrontier currently has the following features: * Models: - skip-gram (Mikolov et al., 2013) - structured skip-gram (Ling et al., 2015) - directional skip-gram (Song et al., 2018) - dependency (Levy and Goldberg, 2014) * Output formats: - [finalfusion](https://finalfusion.github.io) - fastText - word2vec binary - word2vec text - GloVe text * Noise contrastive estimation (Gutmann and Hyvärinen, 2012) * Subword representations (Bojanowski et al., 2016) * Hogwild SGD (Recht et al., 2011) * Quantized embeddings through the [`finalfusion quantize`](https://github.com/finalfusion/finalfusion-utils) command. The trained embeddings can be stored in the versatile `finalfusion` format, which can be read and used with the [finalfusion](https://github.com/finalfusion/finalfusion-rust) crate and the [finalfusion](https://github.com/finalfusion/finalfusion-python) Python module. The minimum required Rust version is currently 1.40. ## Where to go from here * [Installation](docs/INSTALL.md) * [Quickstart](docs/QUICKSTART.md) * Manual pages: - [finalfrontier-skipgram(1)](man/finalfrontier-skipgram.1.md) — train word embeddings with the (structured) skip-gram model - [finalfrontier-deps(1)](man/finalfrontier-deps.1.md) — train word embeddings with dependency contexts * [finalfusion crate](https://github.com/finalfusion/finalfusion-rust) * [Python module](https://github.com/finalfusion/finalfusion-python)