#! /usr/bin/env perl # Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html ###################################################################### ## Constant-time SSSE3 AES core implementation. ## version 0.1 ## ## By Mike Hamburg (Stanford University), 2009 ## Public domain. ## ## For details see http://shiftleft.org/papers/vector_aes/ and ## http://crypto.stanford.edu/vpaes/. ###################################################################### # September 2011. # # Interface to OpenSSL as "almost" drop-in replacement for # aes-x86_64.pl. "Almost" refers to the fact that AES_cbc_encrypt # doesn't handle partial vectors (doesn't have to if called from # EVP only). "Drop-in" implies that this module doesn't share key # schedule structure with the original nor does it make assumption # about its alignment... # # Performance summary. aes-x86_64.pl column lists large-block CBC # encrypt/decrypt/with-hyper-threading-off(*) results in cycles per # byte processed with 128-bit key, and vpaes-x86_64.pl column - # [also large-block CBC] encrypt/decrypt. # # aes-x86_64.pl vpaes-x86_64.pl # # Core 2(**) 29.6/41.1/14.3 21.9/25.2(***) # Nehalem 29.6/40.3/14.6 10.0/11.8 # Atom 57.3/74.2/32.1 60.9/77.2(***) # Silvermont 52.7/64.0/19.5 48.8/60.8(***) # Goldmont 38.9/49.0/17.8 10.6/12.6 # # (*) "Hyper-threading" in the context refers rather to cache shared # among multiple cores, than to specifically Intel HTT. As vast # majority of contemporary cores share cache, slower code path # is common place. In other words "with-hyper-threading-off" # results are presented mostly for reference purposes. # # (**) "Core 2" refers to initial 65nm design, a.k.a. Conroe. # # (***) Less impressive improvement on Core 2 and Atom is due to slow # pshufb, yet it's respectable +36%/62% improvement on Core 2 # (as implied, over "hyper-threading-safe" code path). # # $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; $PREFIX="vpaes"; $code.=<<___; .text ## ## _aes_encrypt_core ## ## AES-encrypt %xmm0. ## ## Inputs: ## %xmm0 = input ## %xmm9-%xmm15 as in _vpaes_preheat ## (%rdx) = scheduled keys ## ## Output in %xmm0 ## Clobbers %xmm1-%xmm5, %r9, %r10, %r11, %rax ## Preserves %xmm6 - %xmm8 so you get some local vectors ## ## .type _vpaes_encrypt_core,\@abi-omnipotent .align 16 _vpaes_encrypt_core: .cfi_startproc mov %rdx, %r9 mov \$16, %r11 mov 240(%rdx),%eax movdqa %xmm9, %xmm1 movdqa .Lk_ipt(%rip), %xmm2 # iptlo pandn %xmm0, %xmm1 movdqu (%r9), %xmm5 # round0 key psrld \$4, %xmm1 pand %xmm9, %xmm0 pshufb %xmm0, %xmm2 movdqa .Lk_ipt+16(%rip), %xmm0 # ipthi pshufb %xmm1, %xmm0 pxor %xmm5, %xmm2 add \$16, %r9 pxor %xmm2, %xmm0 lea .Lk_mc_backward(%rip),%r10 jmp .Lenc_entry .align 16 .Lenc_loop: # middle of middle round movdqa %xmm13, %xmm4 # 4 : sb1u movdqa %xmm12, %xmm0 # 0 : sb1t pshufb %xmm2, %xmm4 # 4 = sb1u pshufb %xmm3, %xmm0 # 0 = sb1t pxor %xmm5, %xmm4 # 4 = sb1u + k movdqa %xmm15, %xmm5 # 4 : sb2u pxor %xmm4, %xmm0 # 0 = A movdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[] pshufb %xmm2, %xmm5 # 4 = sb2u movdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[] movdqa %xmm14, %xmm2 # 2 : sb2t pshufb %xmm3, %xmm2 # 2 = sb2t movdqa %xmm0, %xmm3 # 3 = A pxor %xmm5, %xmm2 # 2 = 2A pshufb %xmm1, %xmm0 # 0 = B add \$16, %r9 # next key pxor %xmm2, %xmm0 # 0 = 2A+B pshufb %xmm4, %xmm3 # 3 = D add \$16, %r11 # next mc pxor %xmm0, %xmm3 # 3 = 2A+B+D pshufb %xmm1, %xmm0 # 0 = 2B+C and \$0x30, %r11 # ... mod 4 sub \$1,%rax # nr-- pxor %xmm3, %xmm0 # 0 = 2A+3B+C+D .Lenc_entry: # top of round movdqa %xmm9, %xmm1 # 1 : i movdqa %xmm11, %xmm5 # 2 : a/k pandn %xmm0, %xmm1 # 1 = i<<4 psrld \$4, %xmm1 # 1 = i pand %xmm9, %xmm0 # 0 = k pshufb %xmm0, %xmm5 # 2 = a/k movdqa %xmm10, %xmm3 # 3 : 1/i pxor %xmm1, %xmm0 # 0 = j pshufb %xmm1, %xmm3 # 3 = 1/i movdqa %xmm10, %xmm4 # 4 : 1/j pxor %xmm5, %xmm3 # 3 = iak = 1/i + a/k pshufb %xmm0, %xmm4 # 4 = 1/j movdqa %xmm10, %xmm2 # 2 : 1/iak pxor %xmm5, %xmm4 # 4 = jak = 1/j + a/k pshufb %xmm3, %xmm2 # 2 = 1/iak movdqa %xmm10, %xmm3 # 3 : 1/jak pxor %xmm0, %xmm2 # 2 = io pshufb %xmm4, %xmm3 # 3 = 1/jak movdqu (%r9), %xmm5 pxor %xmm1, %xmm3 # 3 = jo jnz .Lenc_loop # middle of last round movdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo movdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16 pshufb %xmm2, %xmm4 # 4 = sbou pxor %xmm5, %xmm4 # 4 = sb1u + k pshufb %xmm3, %xmm0 # 0 = sb1t movdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[] pxor %xmm4, %xmm0 # 0 = A pshufb %xmm1, %xmm0 ret .cfi_endproc .size _vpaes_encrypt_core,.-_vpaes_encrypt_core ## ## _aes_encrypt_core_2x ## ## AES-encrypt %xmm0 and %xmm6 in parallel. ## ## Inputs: ## %xmm0 and %xmm6 = input ## %xmm9 and %xmm10 as in _vpaes_preheat ## (%rdx) = scheduled keys ## ## Output in %xmm0 and %xmm6 ## Clobbers %xmm1-%xmm5, %xmm7, %xmm8, %xmm11-%xmm13, %r9, %r10, %r11, %rax ## Preserves %xmm14 and %xmm15 ## ## This function stitches two parallel instances of _vpaes_encrypt_core. x86_64 ## provides 16 XMM registers. _vpaes_encrypt_core computes over six registers ## (%xmm0-%xmm5) and additionally uses seven registers with preloaded constants ## from _vpaes_preheat (%xmm9-%xmm15). This does not quite fit two instances, ## so we spill some of %xmm9 through %xmm15 back to memory. We keep %xmm9 and ## %xmm10 in registers as these values are used several times in a row. The ## remainder are read once per round and are spilled to memory. This leaves two ## registers preserved for the caller. ## ## Thus, of the two _vpaes_encrypt_core instances, the first uses (%xmm0-%xmm5) ## as before. The second uses %xmm6-%xmm8,%xmm11-%xmm13. (Add 6 to %xmm2 and ## below. Add 8 to %xmm3 and up.) Instructions in the second instance are ## indented by one space. ## ## .type _vpaes_encrypt_core_2x,\@abi-omnipotent .align 16 _vpaes_encrypt_core_2x: .cfi_startproc mov %rdx, %r9 mov \$16, %r11 mov 240(%rdx),%eax movdqa %xmm9, %xmm1 movdqa %xmm9, %xmm7 movdqa .Lk_ipt(%rip), %xmm2 # iptlo movdqa %xmm2, %xmm8 pandn %xmm0, %xmm1 pandn %xmm6, %xmm7 movdqu (%r9), %xmm5 # round0 key # Also use %xmm5 in the second instance. psrld \$4, %xmm1 psrld \$4, %xmm7 pand %xmm9, %xmm0 pand %xmm9, %xmm6 pshufb %xmm0, %xmm2 pshufb %xmm6, %xmm8 movdqa .Lk_ipt+16(%rip), %xmm0 # ipthi movdqa %xmm0, %xmm6 pshufb %xmm1, %xmm0 pshufb %xmm7, %xmm6 pxor %xmm5, %xmm2 pxor %xmm5, %xmm8 add \$16, %r9 pxor %xmm2, %xmm0 pxor %xmm8, %xmm6 lea .Lk_mc_backward(%rip),%r10 jmp .Lenc2x_entry .align 16 .Lenc2x_loop: # middle of middle round movdqa .Lk_sb1(%rip), %xmm4 # 4 : sb1u movdqa .Lk_sb1+16(%rip),%xmm0 # 0 : sb1t movdqa %xmm4, %xmm12 movdqa %xmm0, %xmm6 pshufb %xmm2, %xmm4 # 4 = sb1u pshufb %xmm8, %xmm12 pshufb %xmm3, %xmm0 # 0 = sb1t pshufb %xmm11, %xmm6 pxor %xmm5, %xmm4 # 4 = sb1u + k pxor %xmm5, %xmm12 movdqa .Lk_sb2(%rip), %xmm5 # 4 : sb2u movdqa %xmm5, %xmm13 pxor %xmm4, %xmm0 # 0 = A pxor %xmm12, %xmm6 movdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[] # Also use %xmm1 in the second instance. pshufb %xmm2, %xmm5 # 4 = sb2u pshufb %xmm8, %xmm13 movdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[] # Also use %xmm4 in the second instance. movdqa .Lk_sb2+16(%rip), %xmm2 # 2 : sb2t movdqa %xmm2, %xmm8 pshufb %xmm3, %xmm2 # 2 = sb2t pshufb %xmm11, %xmm8 movdqa %xmm0, %xmm3 # 3 = A movdqa %xmm6, %xmm11 pxor %xmm5, %xmm2 # 2 = 2A pxor %xmm13, %xmm8 pshufb %xmm1, %xmm0 # 0 = B pshufb %xmm1, %xmm6 add \$16, %r9 # next key pxor %xmm2, %xmm0 # 0 = 2A+B pxor %xmm8, %xmm6 pshufb %xmm4, %xmm3 # 3 = D pshufb %xmm4, %xmm11 add \$16, %r11 # next mc pxor %xmm0, %xmm3 # 3 = 2A+B+D pxor %xmm6, %xmm11 pshufb %xmm1, %xmm0 # 0 = 2B+C pshufb %xmm1, %xmm6 and \$0x30, %r11 # ... mod 4 sub \$1,%rax # nr-- pxor %xmm3, %xmm0 # 0 = 2A+3B+C+D pxor %xmm11, %xmm6 .Lenc2x_entry: # top of round movdqa %xmm9, %xmm1 # 1 : i movdqa %xmm9, %xmm7 movdqa .Lk_inv+16(%rip), %xmm5 # 2 : a/k movdqa %xmm5, %xmm13 pandn %xmm0, %xmm1 # 1 = i<<4 pandn %xmm6, %xmm7 psrld \$4, %xmm1 # 1 = i psrld \$4, %xmm7 pand %xmm9, %xmm0 # 0 = k pand %xmm9, %xmm6 pshufb %xmm0, %xmm5 # 2 = a/k pshufb %xmm6, %xmm13 movdqa %xmm10, %xmm3 # 3 : 1/i movdqa %xmm10, %xmm11 pxor %xmm1, %xmm0 # 0 = j pxor %xmm7, %xmm6 pshufb %xmm1, %xmm3 # 3 = 1/i pshufb %xmm7, %xmm11 movdqa %xmm10, %xmm4 # 4 : 1/j movdqa %xmm10, %xmm12 pxor %xmm5, %xmm3 # 3 = iak = 1/i + a/k pxor %xmm13, %xmm11 pshufb %xmm0, %xmm4 # 4 = 1/j pshufb %xmm6, %xmm12 movdqa %xmm10, %xmm2 # 2 : 1/iak movdqa %xmm10, %xmm8 pxor %xmm5, %xmm4 # 4 = jak = 1/j + a/k pxor %xmm13, %xmm12 pshufb %xmm3, %xmm2 # 2 = 1/iak pshufb %xmm11, %xmm8 movdqa %xmm10, %xmm3 # 3 : 1/jak movdqa %xmm10, %xmm11 pxor %xmm0, %xmm2 # 2 = io pxor %xmm6, %xmm8 pshufb %xmm4, %xmm3 # 3 = 1/jak pshufb %xmm12, %xmm11 movdqu (%r9), %xmm5 # Also use %xmm5 in the second instance. pxor %xmm1, %xmm3 # 3 = jo pxor %xmm7, %xmm11 jnz .Lenc2x_loop # middle of last round movdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo movdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16 movdqa %xmm4, %xmm12 movdqa %xmm0, %xmm6 pshufb %xmm2, %xmm4 # 4 = sbou pshufb %xmm8, %xmm12 pxor %xmm5, %xmm4 # 4 = sb1u + k pxor %xmm5, %xmm12 pshufb %xmm3, %xmm0 # 0 = sb1t pshufb %xmm11, %xmm6 movdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[] # Also use %xmm1 in the second instance. pxor %xmm4, %xmm0 # 0 = A pxor %xmm12, %xmm6 pshufb %xmm1, %xmm0 pshufb %xmm1, %xmm6 ret .cfi_endproc .size _vpaes_encrypt_core_2x,.-_vpaes_encrypt_core_2x ######################################################## ## ## ## AES key schedule ## ## ## ######################################################## .type _vpaes_schedule_core,\@abi-omnipotent .align 16 _vpaes_schedule_core: .cfi_startproc # rdi = key # rsi = size in bits # rdx = buffer # rcx = direction. 0=encrypt, 1=decrypt call _vpaes_preheat # load the tables movdqa .Lk_rcon(%rip), %xmm8 # load rcon movdqu (%rdi), %xmm0 # load key (unaligned) # input transform movdqa %xmm0, %xmm3 lea .Lk_ipt(%rip), %r11 call _vpaes_schedule_transform movdqa %xmm0, %xmm7 lea .Lk_sr(%rip),%r10 # encrypting, output zeroth round key after transform movdqu %xmm0, (%rdx) .Lschedule_go: cmp \$192, %esi ja .Lschedule_256 # 192-bit key support was removed. # 128: fall though ## ## .schedule_128 ## ## 128-bit specific part of key schedule. ## ## This schedule is really simple, because all its parts ## are accomplished by the subroutines. ## .Lschedule_128: mov \$10, %esi .Loop_schedule_128: call _vpaes_schedule_round dec %rsi jz .Lschedule_mangle_last call _vpaes_schedule_mangle # write output jmp .Loop_schedule_128 ## ## .aes_schedule_256 ## ## 256-bit specific part of key schedule. ## ## The structure here is very similar to the 128-bit ## schedule, but with an additional "low side" in ## %xmm6. The low side's rounds are the same as the ## high side's, except no rcon and no rotation. ## .align 16 .Lschedule_256: movdqu 16(%rdi),%xmm0 # load key part 2 (unaligned) call _vpaes_schedule_transform # input transform mov \$7, %esi .Loop_schedule_256: call _vpaes_schedule_mangle # output low result movdqa %xmm0, %xmm6 # save cur_lo in xmm6 # high round call _vpaes_schedule_round dec %rsi jz .Lschedule_mangle_last call _vpaes_schedule_mangle # low round. swap xmm7 and xmm6 pshufd \$0xFF, %xmm0, %xmm0 movdqa %xmm7, %xmm5 movdqa %xmm6, %xmm7 call _vpaes_schedule_low_round movdqa %xmm5, %xmm7 jmp .Loop_schedule_256 ## ## .aes_schedule_mangle_last ## ## Mangler for last round of key schedule ## Mangles %xmm0 ## when encrypting, outputs out(%xmm0) ^ 63 ## when decrypting, outputs unskew(%xmm0) ## ## Always called right before return... jumps to cleanup and exits ## .align 16 .Lschedule_mangle_last: # schedule last round key from xmm0 lea .Lk_deskew(%rip),%r11 # prepare to deskew # encrypting movdqa (%r8,%r10),%xmm1 pshufb %xmm1, %xmm0 # output permute lea .Lk_opt(%rip), %r11 # prepare to output transform add \$32, %rdx .Lschedule_mangle_last_dec: add \$-16, %rdx pxor .Lk_s63(%rip), %xmm0 call _vpaes_schedule_transform # output transform movdqu %xmm0, (%rdx) # save last key # cleanup pxor %xmm0, %xmm0 pxor %xmm1, %xmm1 pxor %xmm2, %xmm2 pxor %xmm3, %xmm3 pxor %xmm4, %xmm4 pxor %xmm5, %xmm5 pxor %xmm6, %xmm6 pxor %xmm7, %xmm7 ret .cfi_endproc .size _vpaes_schedule_core,.-_vpaes_schedule_core ## ## .aes_schedule_round ## ## Runs one main round of the key schedule on %xmm0, %xmm7 ## ## Specifically, runs subbytes on the high dword of %xmm0 ## then rotates it by one byte and xors into the low dword of ## %xmm7. ## ## Adds rcon from low byte of %xmm8, then rotates %xmm8 for ## next rcon. ## ## Smears the dwords of %xmm7 by xoring the low into the ## second low, result into third, result into highest. ## ## Returns results in %xmm7 = %xmm0. ## Clobbers %xmm1-%xmm4, %r11. ## .type _vpaes_schedule_round,\@abi-omnipotent .align 16 _vpaes_schedule_round: .cfi_startproc # extract rcon from xmm8 pxor %xmm1, %xmm1 palignr \$15, %xmm8, %xmm1 palignr \$15, %xmm8, %xmm8 pxor %xmm1, %xmm7 # rotate pshufd \$0xFF, %xmm0, %xmm0 palignr \$1, %xmm0, %xmm0 # fall through... # low round: same as high round, but no rotation and no rcon. _vpaes_schedule_low_round: # smear xmm7 movdqa %xmm7, %xmm1 pslldq \$4, %xmm7 pxor %xmm1, %xmm7 movdqa %xmm7, %xmm1 pslldq \$8, %xmm7 pxor %xmm1, %xmm7 pxor .Lk_s63(%rip), %xmm7 # subbytes movdqa %xmm9, %xmm1 pandn %xmm0, %xmm1 psrld \$4, %xmm1 # 1 = i pand %xmm9, %xmm0 # 0 = k movdqa %xmm11, %xmm2 # 2 : a/k pshufb %xmm0, %xmm2 # 2 = a/k pxor %xmm1, %xmm0 # 0 = j movdqa %xmm10, %xmm3 # 3 : 1/i pshufb %xmm1, %xmm3 # 3 = 1/i pxor %xmm2, %xmm3 # 3 = iak = 1/i + a/k movdqa %xmm10, %xmm4 # 4 : 1/j pshufb %xmm0, %xmm4 # 4 = 1/j pxor %xmm2, %xmm4 # 4 = jak = 1/j + a/k movdqa %xmm10, %xmm2 # 2 : 1/iak pshufb %xmm3, %xmm2 # 2 = 1/iak pxor %xmm0, %xmm2 # 2 = io movdqa %xmm10, %xmm3 # 3 : 1/jak pshufb %xmm4, %xmm3 # 3 = 1/jak pxor %xmm1, %xmm3 # 3 = jo movdqa %xmm13, %xmm4 # 4 : sbou pshufb %xmm2, %xmm4 # 4 = sbou movdqa %xmm12, %xmm0 # 0 : sbot pshufb %xmm3, %xmm0 # 0 = sb1t pxor %xmm4, %xmm0 # 0 = sbox output # add in smeared stuff pxor %xmm7, %xmm0 movdqa %xmm0, %xmm7 ret .cfi_endproc .size _vpaes_schedule_round,.-_vpaes_schedule_round ## ## .aes_schedule_transform ## ## Linear-transform %xmm0 according to tables at (%r11) ## ## Requires that %xmm9 = 0x0F0F... as in preheat ## Output in %xmm0 ## Clobbers %xmm1, %xmm2 ## .type _vpaes_schedule_transform,\@abi-omnipotent .align 16 _vpaes_schedule_transform: .cfi_startproc movdqa %xmm9, %xmm1 pandn %xmm0, %xmm1 psrld \$4, %xmm1 pand %xmm9, %xmm0 movdqa (%r11), %xmm2 # lo pshufb %xmm0, %xmm2 movdqa 16(%r11), %xmm0 # hi pshufb %xmm1, %xmm0 pxor %xmm2, %xmm0 ret .cfi_endproc .size _vpaes_schedule_transform,.-_vpaes_schedule_transform ## ## .aes_schedule_mangle ## ## Mangle xmm0 from (basis-transformed) standard version ## to our version. ## ## On encrypt, ## xor with 0x63 ## multiply by circulant 0,1,1,1 ## apply shiftrows transform ## ## On decrypt, ## xor with 0x63 ## multiply by "inverse mixcolumns" circulant E,B,D,9 ## deskew ## apply shiftrows transform ## ## ## Writes out to (%rdx), and increments or decrements it ## Keeps track of round number mod 4 in %r8 ## Preserves xmm0 ## Clobbers xmm1-xmm5 ## .type _vpaes_schedule_mangle,\@abi-omnipotent .align 16 _vpaes_schedule_mangle: .cfi_startproc movdqa %xmm0, %xmm4 # save xmm0 for later movdqa .Lk_mc_forward(%rip),%xmm5 # encrypting add \$16, %rdx pxor .Lk_s63(%rip),%xmm4 pshufb %xmm5, %xmm4 movdqa %xmm4, %xmm3 pshufb %xmm5, %xmm4 pxor %xmm4, %xmm3 pshufb %xmm5, %xmm4 pxor %xmm4, %xmm3 .Lschedule_mangle_both: movdqa (%r8,%r10),%xmm1 pshufb %xmm1,%xmm3 add \$-16, %r8 and \$0x30, %r8 movdqu %xmm3, (%rdx) ret .cfi_endproc .size _vpaes_schedule_mangle,.-_vpaes_schedule_mangle # # Interface to OpenSSL # .globl GFp_${PREFIX}_set_encrypt_key .type GFp_${PREFIX}_set_encrypt_key,\@function,3 .align 16 GFp_${PREFIX}_set_encrypt_key: .cfi_startproc #ifdef BORINGSSL_DISPATCH_TEST .extern BORINGSSL_function_hit movb \$1, BORINGSSL_function_hit+5(%rip) #endif ___ $code.=<<___ if ($win64); lea -0xb8(%rsp),%rsp movaps %xmm6,0x10(%rsp) movaps %xmm7,0x20(%rsp) movaps %xmm8,0x30(%rsp) movaps %xmm9,0x40(%rsp) movaps %xmm10,0x50(%rsp) movaps %xmm11,0x60(%rsp) movaps %xmm12,0x70(%rsp) movaps %xmm13,0x80(%rsp) movaps %xmm14,0x90(%rsp) movaps %xmm15,0xa0(%rsp) .Lenc_key_body: ___ $code.=<<___; mov %esi,%eax shr \$5,%eax add \$5,%eax mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5; mov \$0,%ecx mov \$0x30,%r8d call _vpaes_schedule_core ___ $code.=<<___ if ($win64); movaps 0x10(%rsp),%xmm6 movaps 0x20(%rsp),%xmm7 movaps 0x30(%rsp),%xmm8 movaps 0x40(%rsp),%xmm9 movaps 0x50(%rsp),%xmm10 movaps 0x60(%rsp),%xmm11 movaps 0x70(%rsp),%xmm12 movaps 0x80(%rsp),%xmm13 movaps 0x90(%rsp),%xmm14 movaps 0xa0(%rsp),%xmm15 lea 0xb8(%rsp),%rsp .Lenc_key_epilogue: ___ $code.=<<___; xor %eax,%eax ret .cfi_endproc .size GFp_${PREFIX}_set_encrypt_key,.-GFp_${PREFIX}_set_encrypt_key .globl GFp_${PREFIX}_encrypt .type GFp_${PREFIX}_encrypt,\@function,3 .align 16 GFp_${PREFIX}_encrypt: .cfi_startproc ___ $code.=<<___ if ($win64); lea -0xb8(%rsp),%rsp movaps %xmm6,0x10(%rsp) movaps %xmm7,0x20(%rsp) movaps %xmm8,0x30(%rsp) movaps %xmm9,0x40(%rsp) movaps %xmm10,0x50(%rsp) movaps %xmm11,0x60(%rsp) movaps %xmm12,0x70(%rsp) movaps %xmm13,0x80(%rsp) movaps %xmm14,0x90(%rsp) movaps %xmm15,0xa0(%rsp) .Lenc_body: ___ $code.=<<___; movdqu (%rdi),%xmm0 call _vpaes_preheat call _vpaes_encrypt_core movdqu %xmm0,(%rsi) ___ $code.=<<___ if ($win64); movaps 0x10(%rsp),%xmm6 movaps 0x20(%rsp),%xmm7 movaps 0x30(%rsp),%xmm8 movaps 0x40(%rsp),%xmm9 movaps 0x50(%rsp),%xmm10 movaps 0x60(%rsp),%xmm11 movaps 0x70(%rsp),%xmm12 movaps 0x80(%rsp),%xmm13 movaps 0x90(%rsp),%xmm14 movaps 0xa0(%rsp),%xmm15 lea 0xb8(%rsp),%rsp .Lenc_epilogue: ___ $code.=<<___; ret .cfi_endproc .size GFp_${PREFIX}_encrypt,.-GFp_${PREFIX}_encrypt ___ { my ($inp,$out,$blocks,$key,$ivp)=("%rdi","%rsi","%rdx","%rcx","%r8"); # void GFp_vpaes_ctr32_encrypt_blocks(const uint8_t *inp, uint8_t *out, # size_t blocks, const AES_KEY *key, # const uint8_t ivp[16]); $code.=<<___; .globl GFp_${PREFIX}_ctr32_encrypt_blocks .type GFp_${PREFIX}_ctr32_encrypt_blocks,\@function,5 .align 16 GFp_${PREFIX}_ctr32_encrypt_blocks: .cfi_startproc # _vpaes_encrypt_core and _vpaes_encrypt_core_2x expect the key in %rdx. xchg $key, $blocks ___ ($blocks,$key)=($key,$blocks); $code.=<<___; test $blocks, $blocks jz .Lctr32_abort ___ $code.=<<___ if ($win64); lea -0xb8(%rsp),%rsp movaps %xmm6,0x10(%rsp) movaps %xmm7,0x20(%rsp) movaps %xmm8,0x30(%rsp) movaps %xmm9,0x40(%rsp) movaps %xmm10,0x50(%rsp) movaps %xmm11,0x60(%rsp) movaps %xmm12,0x70(%rsp) movaps %xmm13,0x80(%rsp) movaps %xmm14,0x90(%rsp) movaps %xmm15,0xa0(%rsp) .Lctr32_body: ___ $code.=<<___; movdqu ($ivp), %xmm0 # Load IV. movdqa .Lctr_add_one(%rip), %xmm8 sub $inp, $out # This allows only incrementing $inp. call _vpaes_preheat movdqa %xmm0, %xmm6 pshufb .Lrev_ctr(%rip), %xmm6 test \$1, $blocks jz .Lctr32_prep_loop # Handle one block so the remaining block count is even for # _vpaes_encrypt_core_2x. movdqu ($inp), %xmm7 # Load input. call _vpaes_encrypt_core pxor %xmm7, %xmm0 paddd %xmm8, %xmm6 movdqu %xmm0, ($out,$inp) sub \$1, $blocks lea 16($inp), $inp jz .Lctr32_done .Lctr32_prep_loop: # _vpaes_encrypt_core_2x leaves only %xmm14 and %xmm15 as spare # registers. We maintain two byte-swapped counters in them. movdqa %xmm6, %xmm14 movdqa %xmm6, %xmm15 paddd %xmm8, %xmm15 .Lctr32_loop: movdqa .Lrev_ctr(%rip), %xmm1 # Set up counters. movdqa %xmm14, %xmm0 movdqa %xmm15, %xmm6 pshufb %xmm1, %xmm0 pshufb %xmm1, %xmm6 call _vpaes_encrypt_core_2x movdqu ($inp), %xmm1 # Load input. movdqu 16($inp), %xmm2 movdqa .Lctr_add_two(%rip), %xmm3 pxor %xmm1, %xmm0 # XOR input. pxor %xmm2, %xmm6 paddd %xmm3, %xmm14 # Increment counters. paddd %xmm3, %xmm15 movdqu %xmm0, ($out,$inp) # Write output. movdqu %xmm6, 16($out,$inp) sub \$2, $blocks # Advance loop. lea 32($inp), $inp jnz .Lctr32_loop .Lctr32_done: ___ $code.=<<___ if ($win64); movaps 0x10(%rsp),%xmm6 movaps 0x20(%rsp),%xmm7 movaps 0x30(%rsp),%xmm8 movaps 0x40(%rsp),%xmm9 movaps 0x50(%rsp),%xmm10 movaps 0x60(%rsp),%xmm11 movaps 0x70(%rsp),%xmm12 movaps 0x80(%rsp),%xmm13 movaps 0x90(%rsp),%xmm14 movaps 0xa0(%rsp),%xmm15 lea 0xb8(%rsp),%rsp .Lctr32_epilogue: ___ $code.=<<___; .Lctr32_abort: ret .cfi_endproc .size GFp_${PREFIX}_ctr32_encrypt_blocks,.-GFp_${PREFIX}_ctr32_encrypt_blocks ___ } $code.=<<___; ## ## _aes_preheat ## ## Fills register %r10 -> .aes_consts (so you can -fPIC) ## and %xmm9-%xmm15 as specified below. ## .type _vpaes_preheat,\@abi-omnipotent .align 16 _vpaes_preheat: .cfi_startproc lea .Lk_s0F(%rip), %r10 movdqa -0x20(%r10), %xmm10 # .Lk_inv movdqa -0x10(%r10), %xmm11 # .Lk_inv+16 movdqa 0x00(%r10), %xmm9 # .Lk_s0F movdqa 0x30(%r10), %xmm13 # .Lk_sb1 movdqa 0x40(%r10), %xmm12 # .Lk_sb1+16 movdqa 0x50(%r10), %xmm15 # .Lk_sb2 movdqa 0x60(%r10), %xmm14 # .Lk_sb2+16 ret .cfi_endproc .size _vpaes_preheat,.-_vpaes_preheat ######################################################## ## ## ## Constants ## ## ## ######################################################## .type _vpaes_consts,\@object .align 64 _vpaes_consts: .Lk_inv: # inv, inva .quad 0x0E05060F0D080180, 0x040703090A0B0C02 .quad 0x01040A060F0B0780, 0x030D0E0C02050809 .Lk_s0F: # s0F .quad 0x0F0F0F0F0F0F0F0F, 0x0F0F0F0F0F0F0F0F .Lk_ipt: # input transform (lo, hi) .quad 0xC2B2E8985A2A7000, 0xCABAE09052227808 .quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81 .Lk_sb1: # sb1u, sb1t .quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544 .quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF .Lk_sb2: # sb2u, sb2t .quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD .quad 0x69EB88400AE12900, 0xC2A163C8AB82234A .Lk_sbo: # sbou, sbot .quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878 .quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA .Lk_mc_forward: # mc_forward .quad 0x0407060500030201, 0x0C0F0E0D080B0A09 .quad 0x080B0A0904070605, 0x000302010C0F0E0D .quad 0x0C0F0E0D080B0A09, 0x0407060500030201 .quad 0x000302010C0F0E0D, 0x080B0A0904070605 .Lk_mc_backward:# mc_backward .quad 0x0605040702010003, 0x0E0D0C0F0A09080B .quad 0x020100030E0D0C0F, 0x0A09080B06050407 .quad 0x0E0D0C0F0A09080B, 0x0605040702010003 .quad 0x0A09080B06050407, 0x020100030E0D0C0F .Lk_sr: # sr .quad 0x0706050403020100, 0x0F0E0D0C0B0A0908 .quad 0x030E09040F0A0500, 0x0B06010C07020D08 .quad 0x0F060D040B020900, 0x070E050C030A0108 .quad 0x0B0E0104070A0D00, 0x0306090C0F020508 .Lk_rcon: # rcon .quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81 .Lk_s63: # s63: all equal to 0x63 transformed .quad 0x5B5B5B5B5B5B5B5B, 0x5B5B5B5B5B5B5B5B .Lk_opt: # output transform .quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808 .quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0 .Lk_deskew: # deskew tables: inverts the sbox's "skew" .quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A .quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77 # .Lrev_ctr is a permutation which byte-swaps the counter portion of the IV. .Lrev_ctr: .quad 0x0706050403020100, 0x0c0d0e0f0b0a0908 # .Lctr_add_* may be added to a byte-swapped xmm register to increment the # counter. The register must be byte-swapped again to form the actual input. .Lctr_add_one: .quad 0x0000000000000000, 0x0000000100000000 .Lctr_add_two: .quad 0x0000000000000000, 0x0000000200000000 .asciz "Vector Permutation AES for x86_64/SSSE3, Mike Hamburg (Stanford University)" .align 64 .size _vpaes_consts,.-_vpaes_consts ___ if ($win64) { # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lin_prologue lea 16(%rax),%rsi # %xmm save area lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax) .long 0xa548f3fc # cld; rep movsq lea 0xb8(%rax),%rax # adjust stack pointer .Lin_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$`1232/8`,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler .section .pdata .align 4 .rva .LSEH_begin_GFp_${PREFIX}_set_encrypt_key .rva .LSEH_end_GFp_${PREFIX}_set_encrypt_key .rva .LSEH_info_GFp_${PREFIX}_set_encrypt_key .rva .LSEH_begin_GFp_${PREFIX}_encrypt .rva .LSEH_end_GFp_${PREFIX}_encrypt .rva .LSEH_info_GFp_${PREFIX}_encrypt .rva .LSEH_begin_GFp_${PREFIX}_ctr32_encrypt_blocks .rva .LSEH_end_GFp_${PREFIX}_ctr32_encrypt_blocks .rva .LSEH_info_GFp_${PREFIX}_ctr32_encrypt_blocks .section .xdata .align 8 .LSEH_info_GFp_${PREFIX}_set_encrypt_key: .byte 9,0,0,0 .rva se_handler .rva .Lenc_key_body,.Lenc_key_epilogue # HandlerData[] .LSEH_info_GFp_${PREFIX}_encrypt: .byte 9,0,0,0 .rva se_handler .rva .Lenc_body,.Lenc_epilogue # HandlerData[] .LSEH_info_GFp_${PREFIX}_ctr32_encrypt_blocks: .byte 9,0,0,0 .rva se_handler .rva .Lctr32_body,.Lctr32_epilogue # HandlerData[] ___ } $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT or die "error closing STDOUT";