#! /usr/bin/env perl # Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # ECP_NISTZ256 module for ARMv4. # # October 2014. # # Original ECP_NISTZ256 submission targeting x86_64 is detailed in # http://eprint.iacr.org/2013/816. In the process of adaptation # original .c module was made 32-bit savvy in order to make this # implementation possible. # # with/without -DECP_NISTZ256_ASM # Cortex-A8 +53-170% # Cortex-A9 +76-205% # Cortex-A15 +100-316% # Snapdragon S4 +66-187% # # Ranges denote minimum and maximum improvement coefficients depending # on benchmark. Lower coefficients are for ECDSA sign, server-side # operation. Keep in mind that +200% means 3x improvement. $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } $code.=<<___; #include .text #if defined(__thumb2__) .syntax unified .thumb #else .code 32 #endif .asciz "ECP_NISTZ256 for ARMv4, CRYPTOGAMS by " .align 6 ___ ######################################################################## # common register layout, note that $t2 is link register, so that if # internal subroutine uses $t2, then it has to offload lr... ($r_ptr,$a_ptr,$b_ptr,$ff,$a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7,$t1,$t2)= map("r$_",(0..12,14)); ($t0,$t3)=($ff,$a_ptr); $code.=<<___; .type __ecp_nistz256_mul_by_2,%function .align 4 __ecp_nistz256_mul_by_2: ldr $a0,[$a_ptr,#0] ldr $a1,[$a_ptr,#4] ldr $a2,[$a_ptr,#8] adds $a0,$a0,$a0 @ a[0:7]+=a[0:7], i.e. add with itself ldr $a3,[$a_ptr,#12] adcs $a1,$a1,$a1 ldr $a4,[$a_ptr,#16] adcs $a2,$a2,$a2 ldr $a5,[$a_ptr,#20] adcs $a3,$a3,$a3 ldr $a6,[$a_ptr,#24] adcs $a4,$a4,$a4 ldr $a7,[$a_ptr,#28] adcs $a5,$a5,$a5 adcs $a6,$a6,$a6 mov $ff,#0 adcs $a7,$a7,$a7 adc $ff,$ff,#0 b .Lreduce_by_sub .size __ecp_nistz256_mul_by_2,.-__ecp_nistz256_mul_by_2 @ void GFp_nistz256_add(BN_ULONG r0[8],const BN_ULONG r1[8], @ const BN_ULONG r2[8]); .globl GFp_nistz256_add .type GFp_nistz256_add,%function .align 4 GFp_nistz256_add: stmdb sp!,{r4-r12,lr} bl __ecp_nistz256_add #if __ARM_ARCH__>=5 || !defined(__thumb__) ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} bx lr @ interoperable with Thumb ISA:-) #endif .size GFp_nistz256_add,.-GFp_nistz256_add .type __ecp_nistz256_add,%function .align 4 __ecp_nistz256_add: str lr,[sp,#-4]! @ push lr ldr $a0,[$a_ptr,#0] ldr $a1,[$a_ptr,#4] ldr $a2,[$a_ptr,#8] ldr $a3,[$a_ptr,#12] ldr $a4,[$a_ptr,#16] ldr $t0,[$b_ptr,#0] ldr $a5,[$a_ptr,#20] ldr $t1,[$b_ptr,#4] ldr $a6,[$a_ptr,#24] ldr $t2,[$b_ptr,#8] ldr $a7,[$a_ptr,#28] ldr $t3,[$b_ptr,#12] adds $a0,$a0,$t0 ldr $t0,[$b_ptr,#16] adcs $a1,$a1,$t1 ldr $t1,[$b_ptr,#20] adcs $a2,$a2,$t2 ldr $t2,[$b_ptr,#24] adcs $a3,$a3,$t3 ldr $t3,[$b_ptr,#28] adcs $a4,$a4,$t0 adcs $a5,$a5,$t1 adcs $a6,$a6,$t2 mov $ff,#0 adcs $a7,$a7,$t3 adc $ff,$ff,#0 ldr lr,[sp],#4 @ pop lr .Lreduce_by_sub: @ if a+b >= modulus, subtract modulus. @ @ But since comparison implies subtraction, we subtract @ modulus and then add it back if subtraction borrowed. subs $a0,$a0,#-1 sbcs $a1,$a1,#-1 sbcs $a2,$a2,#-1 sbcs $a3,$a3,#0 sbcs $a4,$a4,#0 sbcs $a5,$a5,#0 sbcs $a6,$a6,#1 sbcs $a7,$a7,#-1 sbc $ff,$ff,#0 @ Note that because mod has special form, i.e. consists of @ 0xffffffff, 1 and 0s, we can conditionally synthesize it by @ using value of borrow as a whole or extracting single bit. @ Follow $ff register... adds $a0,$a0,$ff @ add synthesized modulus adcs $a1,$a1,$ff str $a0,[$r_ptr,#0] adcs $a2,$a2,$ff str $a1,[$r_ptr,#4] adcs $a3,$a3,#0 str $a2,[$r_ptr,#8] adcs $a4,$a4,#0 str $a3,[$r_ptr,#12] adcs $a5,$a5,#0 str $a4,[$r_ptr,#16] adcs $a6,$a6,$ff,lsr#31 str $a5,[$r_ptr,#20] adcs $a7,$a7,$ff str $a6,[$r_ptr,#24] str $a7,[$r_ptr,#28] mov pc,lr .size __ecp_nistz256_add,.-__ecp_nistz256_add .type __ecp_nistz256_mul_by_3,%function .align 4 __ecp_nistz256_mul_by_3: str lr,[sp,#-4]! @ push lr @ As multiplication by 3 is performed as 2*n+n, below are inline @ copies of __ecp_nistz256_mul_by_2 and __ecp_nistz256_add, see @ corresponding subroutines for details. ldr $a0,[$a_ptr,#0] ldr $a1,[$a_ptr,#4] ldr $a2,[$a_ptr,#8] adds $a0,$a0,$a0 @ a[0:7]+=a[0:7] ldr $a3,[$a_ptr,#12] adcs $a1,$a1,$a1 ldr $a4,[$a_ptr,#16] adcs $a2,$a2,$a2 ldr $a5,[$a_ptr,#20] adcs $a3,$a3,$a3 ldr $a6,[$a_ptr,#24] adcs $a4,$a4,$a4 ldr $a7,[$a_ptr,#28] adcs $a5,$a5,$a5 adcs $a6,$a6,$a6 mov $ff,#0 adcs $a7,$a7,$a7 adc $ff,$ff,#0 subs $a0,$a0,#-1 @ .Lreduce_by_sub but without stores sbcs $a1,$a1,#-1 sbcs $a2,$a2,#-1 sbcs $a3,$a3,#0 sbcs $a4,$a4,#0 sbcs $a5,$a5,#0 sbcs $a6,$a6,#1 sbcs $a7,$a7,#-1 sbc $ff,$ff,#0 adds $a0,$a0,$ff @ add synthesized modulus adcs $a1,$a1,$ff adcs $a2,$a2,$ff adcs $a3,$a3,#0 adcs $a4,$a4,#0 ldr $b_ptr,[$a_ptr,#0] adcs $a5,$a5,#0 ldr $t1,[$a_ptr,#4] adcs $a6,$a6,$ff,lsr#31 ldr $t2,[$a_ptr,#8] adc $a7,$a7,$ff ldr $t0,[$a_ptr,#12] adds $a0,$a0,$b_ptr @ 2*a[0:7]+=a[0:7] ldr $b_ptr,[$a_ptr,#16] adcs $a1,$a1,$t1 ldr $t1,[$a_ptr,#20] adcs $a2,$a2,$t2 ldr $t2,[$a_ptr,#24] adcs $a3,$a3,$t0 ldr $t3,[$a_ptr,#28] adcs $a4,$a4,$b_ptr adcs $a5,$a5,$t1 adcs $a6,$a6,$t2 mov $ff,#0 adcs $a7,$a7,$t3 adc $ff,$ff,#0 ldr lr,[sp],#4 @ pop lr b .Lreduce_by_sub .size __ecp_nistz256_mul_by_3,.-__ecp_nistz256_mul_by_3 .type __ecp_nistz256_div_by_2,%function .align 4 __ecp_nistz256_div_by_2: @ ret = (a is odd ? a+mod : a) >> 1 ldr $a0,[$a_ptr,#0] ldr $a1,[$a_ptr,#4] ldr $a2,[$a_ptr,#8] mov $ff,$a0,lsl#31 @ place least significant bit to most @ significant position, now arithmetic @ right shift by 31 will produce -1 or @ 0, while logical right shift 1 or 0, @ this is how modulus is conditionally @ synthesized in this case... ldr $a3,[$a_ptr,#12] adds $a0,$a0,$ff,asr#31 ldr $a4,[$a_ptr,#16] adcs $a1,$a1,$ff,asr#31 ldr $a5,[$a_ptr,#20] adcs $a2,$a2,$ff,asr#31 ldr $a6,[$a_ptr,#24] adcs $a3,$a3,#0 ldr $a7,[$a_ptr,#28] adcs $a4,$a4,#0 mov $a0,$a0,lsr#1 @ a[0:7]>>=1, we can start early @ because it doesn't affect flags adcs $a5,$a5,#0 orr $a0,$a0,$a1,lsl#31 adcs $a6,$a6,$ff,lsr#31 mov $b_ptr,#0 adcs $a7,$a7,$ff,asr#31 mov $a1,$a1,lsr#1 adc $b_ptr,$b_ptr,#0 @ top-most carry bit from addition orr $a1,$a1,$a2,lsl#31 mov $a2,$a2,lsr#1 str $a0,[$r_ptr,#0] orr $a2,$a2,$a3,lsl#31 mov $a3,$a3,lsr#1 str $a1,[$r_ptr,#4] orr $a3,$a3,$a4,lsl#31 mov $a4,$a4,lsr#1 str $a2,[$r_ptr,#8] orr $a4,$a4,$a5,lsl#31 mov $a5,$a5,lsr#1 str $a3,[$r_ptr,#12] orr $a5,$a5,$a6,lsl#31 mov $a6,$a6,lsr#1 str $a4,[$r_ptr,#16] orr $a6,$a6,$a7,lsl#31 mov $a7,$a7,lsr#1 str $a5,[$r_ptr,#20] orr $a7,$a7,$b_ptr,lsl#31 @ don't forget the top-most carry bit str $a6,[$r_ptr,#24] str $a7,[$r_ptr,#28] mov pc,lr .size __ecp_nistz256_div_by_2,.-__ecp_nistz256_div_by_2 .type __ecp_nistz256_sub,%function .align 4 __ecp_nistz256_sub: str lr,[sp,#-4]! @ push lr ldr $a0,[$a_ptr,#0] ldr $a1,[$a_ptr,#4] ldr $a2,[$a_ptr,#8] ldr $a3,[$a_ptr,#12] ldr $a4,[$a_ptr,#16] ldr $t0,[$b_ptr,#0] ldr $a5,[$a_ptr,#20] ldr $t1,[$b_ptr,#4] ldr $a6,[$a_ptr,#24] ldr $t2,[$b_ptr,#8] ldr $a7,[$a_ptr,#28] ldr $t3,[$b_ptr,#12] subs $a0,$a0,$t0 ldr $t0,[$b_ptr,#16] sbcs $a1,$a1,$t1 ldr $t1,[$b_ptr,#20] sbcs $a2,$a2,$t2 ldr $t2,[$b_ptr,#24] sbcs $a3,$a3,$t3 ldr $t3,[$b_ptr,#28] sbcs $a4,$a4,$t0 sbcs $a5,$a5,$t1 sbcs $a6,$a6,$t2 sbcs $a7,$a7,$t3 sbc $ff,$ff,$ff @ broadcast borrow bit ldr lr,[sp],#4 @ pop lr .Lreduce_by_add: @ if a-b borrows, add modulus. @ @ Note that because mod has special form, i.e. consists of @ 0xffffffff, 1 and 0s, we can conditionally synthesize it by @ broadcasting borrow bit to a register, $ff, and using it as @ a whole or extracting single bit. adds $a0,$a0,$ff @ add synthesized modulus adcs $a1,$a1,$ff str $a0,[$r_ptr,#0] adcs $a2,$a2,$ff str $a1,[$r_ptr,#4] adcs $a3,$a3,#0 str $a2,[$r_ptr,#8] adcs $a4,$a4,#0 str $a3,[$r_ptr,#12] adcs $a5,$a5,#0 str $a4,[$r_ptr,#16] adcs $a6,$a6,$ff,lsr#31 str $a5,[$r_ptr,#20] adcs $a7,$a7,$ff str $a6,[$r_ptr,#24] str $a7,[$r_ptr,#28] mov pc,lr .size __ecp_nistz256_sub,.-__ecp_nistz256_sub @ void GFp_nistz256_neg(BN_ULONG r0[8],const BN_ULONG r1[8]); .globl GFp_nistz256_neg .type GFp_nistz256_neg,%function .align 4 GFp_nistz256_neg: stmdb sp!,{r4-r12,lr} bl __ecp_nistz256_neg #if __ARM_ARCH__>=5 || !defined(__thumb__) ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} bx lr @ interoperable with Thumb ISA:-) #endif .size GFp_nistz256_neg,.-GFp_nistz256_neg .type __ecp_nistz256_neg,%function .align 4 __ecp_nistz256_neg: ldr $a0,[$a_ptr,#0] eor $ff,$ff,$ff ldr $a1,[$a_ptr,#4] ldr $a2,[$a_ptr,#8] subs $a0,$ff,$a0 ldr $a3,[$a_ptr,#12] sbcs $a1,$ff,$a1 ldr $a4,[$a_ptr,#16] sbcs $a2,$ff,$a2 ldr $a5,[$a_ptr,#20] sbcs $a3,$ff,$a3 ldr $a6,[$a_ptr,#24] sbcs $a4,$ff,$a4 ldr $a7,[$a_ptr,#28] sbcs $a5,$ff,$a5 sbcs $a6,$ff,$a6 sbcs $a7,$ff,$a7 sbc $ff,$ff,$ff b .Lreduce_by_add .size __ecp_nistz256_neg,.-__ecp_nistz256_neg ___ { my @acc=map("r$_",(3..11)); my ($t0,$t1,$bj,$t2,$t3)=map("r$_",(0,1,2,12,14)); $code.=<<___; @ void GFp_nistz256_mul_mont(BN_ULONG r0[8],const BN_ULONG r1[8], @ const BN_ULONG r2[8]); .globl GFp_nistz256_mul_mont .type GFp_nistz256_mul_mont,%function .align 4 GFp_nistz256_mul_mont: stmdb sp!,{r4-r12,lr} bl __ecp_nistz256_mul_mont #if __ARM_ARCH__>=5 || !defined(__thumb__) ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} bx lr @ interoperable with Thumb ISA:-) #endif .size GFp_nistz256_mul_mont,.-GFp_nistz256_mul_mont .type __ecp_nistz256_mul_mont,%function .align 4 __ecp_nistz256_mul_mont: stmdb sp!,{r0-r2,lr} @ make a copy of arguments too ldr $bj,[$b_ptr,#0] @ b[0] ldmia $a_ptr,{@acc[1]-@acc[8]} umull @acc[0],$t3,@acc[1],$bj @ r[0]=a[0]*b[0] stmdb sp!,{$acc[1]-@acc[8]} @ copy a[0-7] to stack, so @ that it can be addressed @ without spending register @ on address umull @acc[1],$t0,@acc[2],$bj @ r[1]=a[1]*b[0] umull @acc[2],$t1,@acc[3],$bj adds @acc[1],@acc[1],$t3 @ accumulate high part of mult umull @acc[3],$t2,@acc[4],$bj adcs @acc[2],@acc[2],$t0 umull @acc[4],$t3,@acc[5],$bj adcs @acc[3],@acc[3],$t1 umull @acc[5],$t0,@acc[6],$bj adcs @acc[4],@acc[4],$t2 umull @acc[6],$t1,@acc[7],$bj adcs @acc[5],@acc[5],$t3 umull @acc[7],$t2,@acc[8],$bj adcs @acc[6],@acc[6],$t0 adcs @acc[7],@acc[7],$t1 eor $t3,$t3,$t3 @ first overflow bit is zero adc @acc[8],$t2,#0 ___ for(my $i=1;$i<8;$i++) { my $t4=@acc[0]; # Reduction iteration is normally performed by accumulating # result of multiplication of modulus by "magic" digit [and # omitting least significant word, which is guaranteed to # be 0], but thanks to special form of modulus and "magic" # digit being equal to least significant word, it can be # performed with additions and subtractions alone. Indeed: # # ffff.0001.0000.0000.0000.ffff.ffff.ffff # * abcd # + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd # # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we # rewrite above as: # # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd # + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000 # - abcd.0000.0000.0000.0000.0000.0000.abcd # # or marking redundant operations: # # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.---- # + abcd.0000.abcd.0000.0000.abcd.----.----.---- # - abcd.----.----.----.----.----.----.---- $code.=<<___; @ multiplication-less reduction $i adds @acc[3],@acc[3],@acc[0] @ r[3]+=r[0] ldr $bj,[sp,#40] @ restore b_ptr adcs @acc[4],@acc[4],#0 @ r[4]+=0 adcs @acc[5],@acc[5],#0 @ r[5]+=0 adcs @acc[6],@acc[6],@acc[0] @ r[6]+=r[0] ldr $t1,[sp,#0] @ load a[0] adcs @acc[7],@acc[7],#0 @ r[7]+=0 ldr $bj,[$bj,#4*$i] @ load b[i] adcs @acc[8],@acc[8],@acc[0] @ r[8]+=r[0] eor $t0,$t0,$t0 adc $t3,$t3,#0 @ overflow bit subs @acc[7],@acc[7],@acc[0] @ r[7]-=r[0] ldr $t2,[sp,#4] @ a[1] sbcs @acc[8],@acc[8],#0 @ r[8]-=0 umlal @acc[1],$t0,$t1,$bj @ "r[0]"+=a[0]*b[i] eor $t1,$t1,$t1 sbc @acc[0],$t3,#0 @ overflow bit, keep in mind @ that netto result is @ addition of a value which @ makes underflow impossible ldr $t3,[sp,#8] @ a[2] umlal @acc[2],$t1,$t2,$bj @ "r[1]"+=a[1]*b[i] str @acc[0],[sp,#36] @ temporarily offload overflow eor $t2,$t2,$t2 ldr $t4,[sp,#12] @ a[3], $t4 is alias @acc[0] umlal @acc[3],$t2,$t3,$bj @ "r[2]"+=a[2]*b[i] eor $t3,$t3,$t3 adds @acc[2],@acc[2],$t0 @ accumulate high part of mult ldr $t0,[sp,#16] @ a[4] umlal @acc[4],$t3,$t4,$bj @ "r[3]"+=a[3]*b[i] eor $t4,$t4,$t4 adcs @acc[3],@acc[3],$t1 ldr $t1,[sp,#20] @ a[5] umlal @acc[5],$t4,$t0,$bj @ "r[4]"+=a[4]*b[i] eor $t0,$t0,$t0 adcs @acc[4],@acc[4],$t2 ldr $t2,[sp,#24] @ a[6] umlal @acc[6],$t0,$t1,$bj @ "r[5]"+=a[5]*b[i] eor $t1,$t1,$t1 adcs @acc[5],@acc[5],$t3 ldr $t3,[sp,#28] @ a[7] umlal @acc[7],$t1,$t2,$bj @ "r[6]"+=a[6]*b[i] eor $t2,$t2,$t2 adcs @acc[6],@acc[6],$t4 ldr @acc[0],[sp,#36] @ restore overflow bit umlal @acc[8],$t2,$t3,$bj @ "r[7]"+=a[7]*b[i] eor $t3,$t3,$t3 adcs @acc[7],@acc[7],$t0 adcs @acc[8],@acc[8],$t1 adcs @acc[0],$acc[0],$t2 adc $t3,$t3,#0 @ new overflow bit ___ push(@acc,shift(@acc)); # rotate registers, so that # "r[i]" becomes r[i] } $code.=<<___; @ last multiplication-less reduction adds @acc[3],@acc[3],@acc[0] ldr $r_ptr,[sp,#32] @ restore r_ptr adcs @acc[4],@acc[4],#0 adcs @acc[5],@acc[5],#0 adcs @acc[6],@acc[6],@acc[0] adcs @acc[7],@acc[7],#0 adcs @acc[8],@acc[8],@acc[0] adc $t3,$t3,#0 subs @acc[7],@acc[7],@acc[0] sbcs @acc[8],@acc[8],#0 sbc @acc[0],$t3,#0 @ overflow bit @ Final step is "if result > mod, subtract mod", but we do it @ "other way around", namely subtract modulus from result @ and if it borrowed, add modulus back. adds @acc[1],@acc[1],#1 @ subs @acc[1],@acc[1],#-1 adcs @acc[2],@acc[2],#0 @ sbcs @acc[2],@acc[2],#-1 adcs @acc[3],@acc[3],#0 @ sbcs @acc[3],@acc[3],#-1 sbcs @acc[4],@acc[4],#0 sbcs @acc[5],@acc[5],#0 sbcs @acc[6],@acc[6],#0 sbcs @acc[7],@acc[7],#1 adcs @acc[8],@acc[8],#0 @ sbcs @acc[8],@acc[8],#-1 ldr lr,[sp,#44] @ restore lr sbc @acc[0],@acc[0],#0 @ broadcast borrow bit add sp,sp,#48 @ Note that because mod has special form, i.e. consists of @ 0xffffffff, 1 and 0s, we can conditionally synthesize it by @ broadcasting borrow bit to a register, @acc[0], and using it as @ a whole or extracting single bit. adds @acc[1],@acc[1],@acc[0] @ add modulus or zero adcs @acc[2],@acc[2],@acc[0] str @acc[1],[$r_ptr,#0] adcs @acc[3],@acc[3],@acc[0] str @acc[2],[$r_ptr,#4] adcs @acc[4],@acc[4],#0 str @acc[3],[$r_ptr,#8] adcs @acc[5],@acc[5],#0 str @acc[4],[$r_ptr,#12] adcs @acc[6],@acc[6],#0 str @acc[5],[$r_ptr,#16] adcs @acc[7],@acc[7],@acc[0],lsr#31 str @acc[6],[$r_ptr,#20] adc @acc[8],@acc[8],@acc[0] str @acc[7],[$r_ptr,#24] str @acc[8],[$r_ptr,#28] mov pc,lr .size __ecp_nistz256_mul_mont,.-__ecp_nistz256_mul_mont ___ } {{{ ######################################################################## # Below $aN assignment matches order in which 256-bit result appears in # register bank at return from __ecp_nistz256_mul_mont, so that we can # skip over reloading it from memory. This means that below functions # use custom calling sequence accepting 256-bit input in registers, # output pointer in r0, $r_ptr, and optional pointer in r2, $b_ptr. # # See their "normal" counterparts for insights on calculations. my ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7, $t0,$t1,$t2,$t3)=map("r$_",(11,3..10,12,14,1)); my $ff=$b_ptr; $code.=<<___; .type __ecp_nistz256_sub_from,%function .align 5 __ecp_nistz256_sub_from: str lr,[sp,#-4]! @ push lr ldr $t0,[$b_ptr,#0] ldr $t1,[$b_ptr,#4] ldr $t2,[$b_ptr,#8] ldr $t3,[$b_ptr,#12] subs $a0,$a0,$t0 ldr $t0,[$b_ptr,#16] sbcs $a1,$a1,$t1 ldr $t1,[$b_ptr,#20] sbcs $a2,$a2,$t2 ldr $t2,[$b_ptr,#24] sbcs $a3,$a3,$t3 ldr $t3,[$b_ptr,#28] sbcs $a4,$a4,$t0 sbcs $a5,$a5,$t1 sbcs $a6,$a6,$t2 sbcs $a7,$a7,$t3 sbc $ff,$ff,$ff @ broadcast borrow bit ldr lr,[sp],#4 @ pop lr adds $a0,$a0,$ff @ add synthesized modulus adcs $a1,$a1,$ff str $a0,[$r_ptr,#0] adcs $a2,$a2,$ff str $a1,[$r_ptr,#4] adcs $a3,$a3,#0 str $a2,[$r_ptr,#8] adcs $a4,$a4,#0 str $a3,[$r_ptr,#12] adcs $a5,$a5,#0 str $a4,[$r_ptr,#16] adcs $a6,$a6,$ff,lsr#31 str $a5,[$r_ptr,#20] adcs $a7,$a7,$ff str $a6,[$r_ptr,#24] str $a7,[$r_ptr,#28] mov pc,lr .size __ecp_nistz256_sub_from,.-__ecp_nistz256_sub_from .type __ecp_nistz256_sub_morf,%function .align 5 __ecp_nistz256_sub_morf: str lr,[sp,#-4]! @ push lr ldr $t0,[$b_ptr,#0] ldr $t1,[$b_ptr,#4] ldr $t2,[$b_ptr,#8] ldr $t3,[$b_ptr,#12] subs $a0,$t0,$a0 ldr $t0,[$b_ptr,#16] sbcs $a1,$t1,$a1 ldr $t1,[$b_ptr,#20] sbcs $a2,$t2,$a2 ldr $t2,[$b_ptr,#24] sbcs $a3,$t3,$a3 ldr $t3,[$b_ptr,#28] sbcs $a4,$t0,$a4 sbcs $a5,$t1,$a5 sbcs $a6,$t2,$a6 sbcs $a7,$t3,$a7 sbc $ff,$ff,$ff @ broadcast borrow bit ldr lr,[sp],#4 @ pop lr adds $a0,$a0,$ff @ add synthesized modulus adcs $a1,$a1,$ff str $a0,[$r_ptr,#0] adcs $a2,$a2,$ff str $a1,[$r_ptr,#4] adcs $a3,$a3,#0 str $a2,[$r_ptr,#8] adcs $a4,$a4,#0 str $a3,[$r_ptr,#12] adcs $a5,$a5,#0 str $a4,[$r_ptr,#16] adcs $a6,$a6,$ff,lsr#31 str $a5,[$r_ptr,#20] adcs $a7,$a7,$ff str $a6,[$r_ptr,#24] str $a7,[$r_ptr,#28] mov pc,lr .size __ecp_nistz256_sub_morf,.-__ecp_nistz256_sub_morf .type __ecp_nistz256_add_self,%function .align 4 __ecp_nistz256_add_self: adds $a0,$a0,$a0 @ a[0:7]+=a[0:7] adcs $a1,$a1,$a1 adcs $a2,$a2,$a2 adcs $a3,$a3,$a3 adcs $a4,$a4,$a4 adcs $a5,$a5,$a5 adcs $a6,$a6,$a6 mov $ff,#0 adcs $a7,$a7,$a7 adc $ff,$ff,#0 @ if a+b >= modulus, subtract modulus. @ @ But since comparison implies subtraction, we subtract @ modulus and then add it back if subtraction borrowed. subs $a0,$a0,#-1 sbcs $a1,$a1,#-1 sbcs $a2,$a2,#-1 sbcs $a3,$a3,#0 sbcs $a4,$a4,#0 sbcs $a5,$a5,#0 sbcs $a6,$a6,#1 sbcs $a7,$a7,#-1 sbc $ff,$ff,#0 @ Note that because mod has special form, i.e. consists of @ 0xffffffff, 1 and 0s, we can conditionally synthesize it by @ using value of borrow as a whole or extracting single bit. @ Follow $ff register... adds $a0,$a0,$ff @ add synthesized modulus adcs $a1,$a1,$ff str $a0,[$r_ptr,#0] adcs $a2,$a2,$ff str $a1,[$r_ptr,#4] adcs $a3,$a3,#0 str $a2,[$r_ptr,#8] adcs $a4,$a4,#0 str $a3,[$r_ptr,#12] adcs $a5,$a5,#0 str $a4,[$r_ptr,#16] adcs $a6,$a6,$ff,lsr#31 str $a5,[$r_ptr,#20] adcs $a7,$a7,$ff str $a6,[$r_ptr,#24] str $a7,[$r_ptr,#28] mov pc,lr .size __ecp_nistz256_add_self,.-__ecp_nistz256_add_self ___ ######################################################################## # following subroutines are "literal" implementation of those found in # ecp_nistz256.c # ######################################################################## # void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); # { my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4)); # above map() describes stack layout with 5 temporary # 256-bit vectors on top. Then note that we push # starting from r0, which means that we have copy of # input arguments just below these temporary vectors. $code.=<<___; .globl GFp_nistz256_point_double .type GFp_nistz256_point_double,%function .align 5 GFp_nistz256_point_double: stmdb sp!,{r0-r12,lr} @ push from r0, unusual, but intentional sub sp,sp,#32*5 .Lpoint_double_shortcut: add r3,sp,#$in_x ldmia $a_ptr!,{r4-r11} @ copy in_x stmia r3,{r4-r11} add $r_ptr,sp,#$S bl __ecp_nistz256_mul_by_2 @ p256_mul_by_2(S, in_y); add $b_ptr,$a_ptr,#32 add $a_ptr,$a_ptr,#32 add $r_ptr,sp,#$Zsqr bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Zsqr, in_z); add $a_ptr,sp,#$S add $b_ptr,sp,#$S add $r_ptr,sp,#$S bl __ecp_nistz256_mul_mont @ p256_sqr_mont(S, S); ldr $b_ptr,[sp,#32*5+4] add $a_ptr,$b_ptr,#32 add $b_ptr,$b_ptr,#64 add $r_ptr,sp,#$tmp0 bl __ecp_nistz256_mul_mont @ p256_mul_mont(tmp0, in_z, in_y); ldr $r_ptr,[sp,#32*5] add $r_ptr,$r_ptr,#64 bl __ecp_nistz256_add_self @ p256_mul_by_2(res_z, tmp0); add $a_ptr,sp,#$in_x add $b_ptr,sp,#$Zsqr add $r_ptr,sp,#$M bl __ecp_nistz256_add @ p256_add(M, in_x, Zsqr); add $a_ptr,sp,#$in_x add $b_ptr,sp,#$Zsqr add $r_ptr,sp,#$Zsqr bl __ecp_nistz256_sub @ p256_sub(Zsqr, in_x, Zsqr); add $a_ptr,sp,#$S add $b_ptr,sp,#$S add $r_ptr,sp,#$tmp0 bl __ecp_nistz256_mul_mont @ p256_sqr_mont(tmp0, S); add $a_ptr,sp,#$Zsqr add $b_ptr,sp,#$M add $r_ptr,sp,#$M bl __ecp_nistz256_mul_mont @ p256_mul_mont(M, M, Zsqr); ldr $r_ptr,[sp,#32*5] add $a_ptr,sp,#$tmp0 add $r_ptr,$r_ptr,#32 bl __ecp_nistz256_div_by_2 @ p256_div_by_2(res_y, tmp0); add $a_ptr,sp,#$M add $r_ptr,sp,#$M bl __ecp_nistz256_mul_by_3 @ p256_mul_by_3(M, M); add $a_ptr,sp,#$in_x add $b_ptr,sp,#$S add $r_ptr,sp,#$S bl __ecp_nistz256_mul_mont @ p256_mul_mont(S, S, in_x); add $r_ptr,sp,#$tmp0 bl __ecp_nistz256_add_self @ p256_mul_by_2(tmp0, S); ldr $r_ptr,[sp,#32*5] add $a_ptr,sp,#$M add $b_ptr,sp,#$M bl __ecp_nistz256_mul_mont @ p256_sqr_mont(res_x, M); add $b_ptr,sp,#$tmp0 bl __ecp_nistz256_sub_from @ p256_sub(res_x, res_x, tmp0); add $b_ptr,sp,#$S add $r_ptr,sp,#$S bl __ecp_nistz256_sub_morf @ p256_sub(S, S, res_x); add $a_ptr,sp,#$M add $b_ptr,sp,#$S bl __ecp_nistz256_mul_mont @ p256_mul_mont(S, S, M); ldr $r_ptr,[sp,#32*5] add $b_ptr,$r_ptr,#32 add $r_ptr,$r_ptr,#32 bl __ecp_nistz256_sub_from @ p256_sub(res_y, S, res_y); add sp,sp,#32*5+16 @ +16 means "skip even over saved r0-r3" #if __ARM_ARCH__>=5 || !defined(__thumb__) ldmia sp!,{r4-r12,pc} #else ldmia sp!,{r4-r12,lr} bx lr @ interoperable with Thumb ISA:-) #endif .size GFp_nistz256_point_double,.-GFp_nistz256_point_double ___ } }}} foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo; print $_,"\n"; } close STDOUT or die "error closing STDOUT";