/* Copyright 2016 Brian Smith. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "../../limbs/limbs.h" #include "ecp_nistz384.h" #include "../bn/internal.h" #include "../../internal.h" #include "../../limbs/limbs.inl" /* XXX: Here we assume that the conversion from |Carry| to |Limb| is * constant-time, but we haven't verified that assumption. TODO: Fix it so * we don't need to make that assumption. */ typedef Limb Elem[P384_LIMBS]; typedef Limb ScalarMont[P384_LIMBS]; typedef Limb Scalar[P384_LIMBS]; static const BN_ULONG Q[P384_LIMBS] = { TOBN(0x00000000, 0xffffffff), TOBN(0xffffffff, 0x00000000), TOBN(0xffffffff, 0xfffffffe), TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff), }; static const BN_ULONG N[P384_LIMBS] = { TOBN(0xecec196a, 0xccc52973), TOBN(0x581a0db2, 0x48b0a77a), TOBN(0xc7634d81, 0xf4372ddf), TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff), }; static const BN_ULONG ONE[P384_LIMBS] = { TOBN(0xffffffff, 1), TOBN(0, 0xffffffff), TOBN(0, 1), TOBN(0, 0), TOBN(0, 0), TOBN(0, 0), }; /* XXX: MSVC for x86 warns when it fails to inline these functions it should * probably inline. */ #if defined(_MSC_VER) && !defined(__clang__) && defined(OPENSSL_X86) #define INLINE_IF_POSSIBLE __forceinline #else #define INLINE_IF_POSSIBLE inline #endif static inline Limb is_equal(const Elem a, const Elem b) { return LIMBS_equal(a, b, P384_LIMBS); } static inline Limb is_zero(const BN_ULONG a[P384_LIMBS]) { return LIMBS_are_zero(a, P384_LIMBS); } static inline void copy_conditional(Elem r, const Elem a, const Limb condition) { for (size_t i = 0; i < P384_LIMBS; ++i) { r[i] = constant_time_select_w(condition, a[i], r[i]); } } static inline void elem_add(Elem r, const Elem a, const Elem b) { LIMBS_add_mod(r, a, b, Q, P384_LIMBS); } static inline void elem_sub(Elem r, const Elem a, const Elem b) { LIMBS_sub_mod(r, a, b, Q, P384_LIMBS); } static void elem_div_by_2(Elem r, const Elem a) { /* Consider the case where `a` is even. Then we can shift `a` right one bit * and the result will still be valid because we didn't lose any bits and so * `(a >> 1) * 2 == a (mod q)`, which is the invariant we must satisfy. * * The remainder of this comment is considering the case where `a` is odd. * * Since `a` is odd, it isn't the case that `(a >> 1) * 2 == a (mod q)` * because the lowest bit is lost during the shift. For example, consider: * * ```python * q = 2**384 - 2**128 - 2**96 + 2**32 - 1 * a = 2**383 * two_a = a * 2 % q * assert two_a == 0x100000000ffffffffffffffff00000001 * ``` * * Notice there how `(2 * a) % q` wrapped around to a smaller odd value. When * we divide `two_a` by two (mod q), we need to get the value `2**383`, which * we obviously can't get with just a right shift. * * `q` is odd, and `a` is odd, so `a + q` is even. We could calculate * `(a + q) >> 1` and then reduce it mod `q`. However, then we would have to * keep track of an extra most significant bit. We can avoid that by instead * calculating `(a >> 1) + ((q + 1) >> 1)`. The `1` in `q + 1` is the least * significant bit of `a`. `q + 1` is even, which means it can be shifted * without losing any bits. Since `q` is odd, `q - 1` is even, so the largest * odd field element is `q - 2`. Thus we know that `a <= q - 2`. We know * `(q + 1) >> 1` is `(q + 1) / 2` since (`q + 1`) is even. The value of * `a >> 1` is `(a - 1)/2` since the shift will drop the least significant * bit of `a`, which is 1. Thus: * * sum = ((q + 1) >> 1) + (a >> 1) * sum = (q + 1)/2 + (a >> 1) (substituting (q + 1)/2) * <= (q + 1)/2 + (q - 2 - 1)/2 (substituting a <= q - 2) * <= (q + 1)/2 + (q - 3)/2 (simplifying) * <= (q + 1 + q - 3)/2 (factoring out the common divisor) * <= (2q - 2)/2 (simplifying) * <= q - 1 (simplifying) * * Thus, no reduction of the sum mod `q` is necessary. */ Limb is_odd = constant_time_is_nonzero_w(a[0] & 1); /* r = a >> 1. */ Limb carry = a[P384_LIMBS - 1] & 1; r[P384_LIMBS - 1] = a[P384_LIMBS - 1] >> 1; for (size_t i = 1; i < P384_LIMBS; ++i) { Limb new_carry = a[P384_LIMBS - i - 1]; r[P384_LIMBS - i - 1] = (a[P384_LIMBS - i - 1] >> 1) | (carry << (LIMB_BITS - 1)); carry = new_carry; } static const Elem Q_PLUS_1_SHR_1 = { TOBN(0x00000000, 0x80000000), TOBN(0x7fffffff, 0x80000000), TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff), TOBN(0xffffffff, 0xffffffff), TOBN(0x7fffffff, 0xffffffff), }; Elem adjusted; BN_ULONG carry2 = limbs_add(adjusted, r, Q_PLUS_1_SHR_1, P384_LIMBS); dev_assert_secret(carry2 == 0); (void)carry2; copy_conditional(r, adjusted, is_odd); } static inline void elem_mul_mont(Elem r, const Elem a, const Elem b) { static const BN_ULONG Q_N0[] = { BN_MONT_CTX_N0(0x1, 0x1) }; /* XXX: Not (clearly) constant-time; inefficient.*/ GFp_bn_mul_mont(r, a, b, Q, Q_N0, P384_LIMBS); } static inline void elem_mul_by_2(Elem r, const Elem a) { LIMBS_shl_mod(r, a, Q, P384_LIMBS); } static INLINE_IF_POSSIBLE void elem_mul_by_3(Elem r, const Elem a) { /* XXX: inefficient. TODO: Replace with an integrated shift + add. */ Elem doubled; elem_add(doubled, a, a); elem_add(r, doubled, a); } static inline void elem_sqr_mont(Elem r, const Elem a) { /* XXX: Inefficient. TODO: Add a dedicated squaring routine. */ elem_mul_mont(r, a, a); } void GFp_p384_elem_add(Elem r, const Elem a, const Elem b) { elem_add(r, a, b); } void GFp_p384_elem_sub(Elem r, const Elem a, const Elem b) { elem_sub(r, a, b); } void GFp_p384_elem_div_by_2(Elem r, const Elem a) { elem_div_by_2(r, a); } void GFp_p384_elem_mul_mont(Elem r, const Elem a, const Elem b) { elem_mul_mont(r, a, b); } void GFp_p384_elem_neg(Elem r, const Elem a) { Limb is_zero = LIMBS_are_zero(a, P384_LIMBS); Carry borrow = limbs_sub(r, Q, a, P384_LIMBS); dev_assert_secret(borrow == 0); (void)borrow; for (size_t i = 0; i < P384_LIMBS; ++i) { r[i] = constant_time_select_w(is_zero, 0, r[i]); } } void GFp_p384_scalar_mul_mont(ScalarMont r, const ScalarMont a, const ScalarMont b) { static const BN_ULONG N_N0[] = { BN_MONT_CTX_N0(0x6ed46089, 0xe88fdc45) }; /* XXX: Inefficient. TODO: Add dedicated multiplication routine. */ GFp_bn_mul_mont(r, a, b, N, N_N0, P384_LIMBS); } /* TODO(perf): Optimize this. */ static void gfp_p384_point_select_w5(P384_POINT *out, const P384_POINT table[16], size_t index) { Elem x; limbs_zero(x, P384_LIMBS); Elem y; limbs_zero(y, P384_LIMBS); Elem z; limbs_zero(z, P384_LIMBS); // TODO: Rewrite in terms of |limbs_select|. for (size_t i = 0; i < 16; ++i) { Limb equal = constant_time_eq_w(index, i + 1); for (size_t j = 0; j < P384_LIMBS; ++j) { x[j] = constant_time_select_w(equal, table[i].X[j], x[j]); y[j] = constant_time_select_w(equal, table[i].Y[j], y[j]); z[j] = constant_time_select_w(equal, table[i].Z[j], z[j]); } } limbs_copy(out->X, x, P384_LIMBS); limbs_copy(out->Y, y, P384_LIMBS); limbs_copy(out->Z, z, P384_LIMBS); } #include "ecp_nistz384.inl"