#! /usr/bin/env perl # Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # March, June 2010 # # The module implements "4-bit" GCM GHASH function and underlying # single multiplication operation in GF(2^128). "4-bit" means that # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH # function features so called "528B" variant utilizing additional # 256+16 bytes of per-key storage [+512 bytes shared table]. # Performance results are for this streamed GHASH subroutine and are # expressed in cycles per processed byte, less is better: # # gcc 3.4.x(*) assembler # # P4 28.6 14.0 +100% # Opteron 19.3 7.7 +150% # Core2 17.8 8.1(**) +120% # Atom 31.6 16.8 +88% # VIA Nano 21.8 10.1 +115% # # (*) comparison is not completely fair, because C results are # for vanilla "256B" implementation, while assembler results # are for "528B";-) # (**) it's mystery [to me] why Core2 result is not same as for # Opteron; # May 2010 # # Add PCLMULQDQ version performing at 2.02 cycles per processed byte. # See ghash-x86.pl for background information and details about coding # techniques. # # Special thanks to David Woodhouse for providing access to a # Westmere-based system on behalf of Intel Open Source Technology Centre. # December 2012 # # Overhaul: aggregate Karatsuba post-processing, improve ILP in # reduction_alg9, increase reduction aggregate factor to 4x. As for # the latter. ghash-x86.pl discusses that it makes lesser sense to # increase aggregate factor. Then why increase here? Critical path # consists of 3 independent pclmulqdq instructions, Karatsuba post- # processing and reduction. "On top" of this we lay down aggregated # multiplication operations, triplets of independent pclmulqdq's. As # issue rate for pclmulqdq is limited, it makes lesser sense to # aggregate more multiplications than it takes to perform remaining # non-multiplication operations. 2x is near-optimal coefficient for # contemporary Intel CPUs (therefore modest improvement coefficient), # but not for Bulldozer. Latter is because logical SIMD operations # are twice as slow in comparison to Intel, so that critical path is # longer. A CPU with higher pclmulqdq issue rate would also benefit # from higher aggregate factor... # # Westmere 1.78(+13%) # Sandy Bridge 1.80(+8%) # Ivy Bridge 1.80(+7%) # Haswell 0.55(+93%) (if system doesn't support AVX) # Broadwell 0.45(+110%)(if system doesn't support AVX) # Skylake 0.44(+110%)(if system doesn't support AVX) # Bulldozer 1.49(+27%) # Silvermont 2.88(+13%) # Knights L 2.12(-) (if system doesn't support AVX) # Goldmont 1.08(+24%) # March 2013 # # ... 8x aggregate factor AVX code path is using reduction algorithm # suggested by Shay Gueron[1]. Even though contemporary AVX-capable # CPUs such as Sandy and Ivy Bridge can execute it, the code performs # sub-optimally in comparison to above mentioned version. But thanks # to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that # it performs in 0.41 cycles per byte on Haswell processor, in # 0.29 on Broadwell, and in 0.36 on Skylake. # # Knights Landing achieves 1.09 cpb. # # [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest # This file was patched in BoringSSL to remove the variable-time 4-bit # implementation. $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; # See the notes about |$avx| in aesni-gcm-x86_64.pl; otherwise tags will be # computed incorrectly. # # In upstream, this is controlled by shelling out to the compiler to check # versions, but BoringSSL is intended to be used with pre-generated perlasm # output, so this isn't useful anyway. $avx = 1; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; $do4xaggr=1; $code=<<___; .text .extern GFp_ia32cap_P ___ ###################################################################### # PCLMULQDQ version. @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order ("%rdi","%rsi","%rdx","%rcx"); # Unix order ($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2"; ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5"); sub clmul64x64_T2 { # minimal register pressure my ($Xhi,$Xi,$Hkey,$HK)=@_; if (!defined($HK)) { $HK = $T2; $code.=<<___; movdqa $Xi,$Xhi # pshufd \$0b01001110,$Xi,$T1 pshufd \$0b01001110,$Hkey,$T2 pxor $Xi,$T1 # pxor $Hkey,$T2 ___ } else { $code.=<<___; movdqa $Xi,$Xhi # pshufd \$0b01001110,$Xi,$T1 pxor $Xi,$T1 # ___ } $code.=<<___; pclmulqdq \$0x00,$Hkey,$Xi ####### pclmulqdq \$0x11,$Hkey,$Xhi ####### pclmulqdq \$0x00,$HK,$T1 ####### pxor $Xi,$T1 # pxor $Xhi,$T1 # movdqa $T1,$T2 # psrldq \$8,$T1 pslldq \$8,$T2 # pxor $T1,$Xhi pxor $T2,$Xi # ___ } sub reduction_alg9 { # 17/11 times faster than Intel version my ($Xhi,$Xi) = @_; $code.=<<___; # 1st phase movdqa $Xi,$T2 # movdqa $Xi,$T1 psllq \$5,$Xi pxor $Xi,$T1 # psllq \$1,$Xi pxor $T1,$Xi # psllq \$57,$Xi # movdqa $Xi,$T1 # pslldq \$8,$Xi psrldq \$8,$T1 # pxor $T2,$Xi pxor $T1,$Xhi # # 2nd phase movdqa $Xi,$T2 psrlq \$1,$Xi pxor $T2,$Xhi # pxor $Xi,$T2 psrlq \$5,$Xi pxor $T2,$Xi # psrlq \$1,$Xi # pxor $Xhi,$Xi # ___ } { my ($Htbl,$Xip)=@_4args; my $HK="%xmm6"; $code.=<<___; .globl GFp_gcm_init_clmul .type GFp_gcm_init_clmul,\@abi-omnipotent .align 16 GFp_gcm_init_clmul: .cfi_startproc .L_init_clmul: ___ $code.=<<___ if ($win64); .LSEH_begin_GFp_gcm_init_clmul: # I can't trust assembler to use specific encoding:-( .byte 0x48,0x83,0xec,0x18 #sub $0x18,%rsp .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp) ___ $code.=<<___; movdqu ($Xip),$Hkey pshufd \$0b01001110,$Hkey,$Hkey # dword swap # <<1 twist pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword movdqa $Hkey,$T1 psllq \$1,$Hkey pxor $T3,$T3 # psrlq \$63,$T1 pcmpgtd $T2,$T3 # broadcast carry bit pslldq \$8,$T1 por $T1,$Hkey # H<<=1 # magic reduction pand .L0x1c2_polynomial(%rip),$T3 pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial # calculate H^2 pshufd \$0b01001110,$Hkey,$HK movdqa $Hkey,$Xi pxor $Hkey,$HK ___ &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); &reduction_alg9 ($Xhi,$Xi); $code.=<<___; pshufd \$0b01001110,$Hkey,$T1 pshufd \$0b01001110,$Xi,$T2 pxor $Hkey,$T1 # Karatsuba pre-processing movdqu $Hkey,0x00($Htbl) # save H pxor $Xi,$T2 # Karatsuba pre-processing movdqu $Xi,0x10($Htbl) # save H^2 palignr \$8,$T1,$T2 # low part is H.lo^H.hi... movdqu $T2,0x20($Htbl) # save Karatsuba "salt" ___ if ($do4xaggr) { &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H^3 &reduction_alg9 ($Xhi,$Xi); $code.=<<___; movdqa $Xi,$T3 ___ &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H^4 &reduction_alg9 ($Xhi,$Xi); $code.=<<___; pshufd \$0b01001110,$T3,$T1 pshufd \$0b01001110,$Xi,$T2 pxor $T3,$T1 # Karatsuba pre-processing movdqu $T3,0x30($Htbl) # save H^3 pxor $Xi,$T2 # Karatsuba pre-processing movdqu $Xi,0x40($Htbl) # save H^4 palignr \$8,$T1,$T2 # low part is H^3.lo^H^3.hi... movdqu $T2,0x50($Htbl) # save Karatsuba "salt" ___ } $code.=<<___ if ($win64); movaps (%rsp),%xmm6 lea 0x18(%rsp),%rsp .LSEH_end_GFp_gcm_init_clmul: ___ $code.=<<___; ret .cfi_endproc .size GFp_gcm_init_clmul,.-GFp_gcm_init_clmul ___ } { my ($Xip,$Htbl)=@_4args; $code.=<<___; .globl GFp_gcm_gmult_clmul .type GFp_gcm_gmult_clmul,\@abi-omnipotent .align 16 GFp_gcm_gmult_clmul: .cfi_startproc .L_gmult_clmul: movdqu ($Xip),$Xi movdqa .Lbswap_mask(%rip),$T3 movdqu ($Htbl),$Hkey movdqu 0x20($Htbl),$T2 pshufb $T3,$Xi ___ &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$T2); $code.=<<___ if (0 || (&reduction_alg9($Xhi,$Xi)&&0)); # experimental alternative. special thing about is that there # no dependency between the two multiplications... mov \$`0xE1<<1`,%eax mov \$0xA040608020C0E000,%r10 # ((7..0)·0xE0)&0xff mov \$0x07,%r11d movq %rax,$T1 movq %r10,$T2 movq %r11,$T3 # borrow $T3 pand $Xi,$T3 pshufb $T3,$T2 # ($Xi&7)·0xE0 movq %rax,$T3 pclmulqdq \$0x00,$Xi,$T1 # ·(0xE1<<1) pxor $Xi,$T2 pslldq \$15,$T2 paddd $T2,$T2 # <<(64+56+1) pxor $T2,$Xi pclmulqdq \$0x01,$T3,$Xi movdqa .Lbswap_mask(%rip),$T3 # reload $T3 psrldq \$1,$T1 pxor $T1,$Xhi pslldq \$7,$Xi pxor $Xhi,$Xi ___ $code.=<<___; pshufb $T3,$Xi movdqu $Xi,($Xip) ret .cfi_endproc .size GFp_gcm_gmult_clmul,.-GFp_gcm_gmult_clmul ___ } { my ($Xip,$Htbl,$inp,$len)=@_4args; my ($Xln,$Xmn,$Xhn,$Hkey2,$HK) = map("%xmm$_",(3..7)); my ($T1,$T2,$T3)=map("%xmm$_",(8..10)); $code.=<<___; .globl GFp_gcm_ghash_clmul .type GFp_gcm_ghash_clmul,\@abi-omnipotent .align 32 GFp_gcm_ghash_clmul: .cfi_startproc .L_ghash_clmul: ___ $code.=<<___ if ($win64); lea -0x88(%rsp),%rax .LSEH_begin_GFp_gcm_ghash_clmul: # I can't trust assembler to use specific encoding:-( .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6,-0x20(%rax) .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7,-0x10(%rax) .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8,0(%rax) .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9,0x10(%rax) .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10,0x20(%rax) .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11,0x30(%rax) .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12,0x40(%rax) .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13,0x50(%rax) .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14,0x60(%rax) .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15,0x70(%rax) ___ $code.=<<___; movdqa .Lbswap_mask(%rip),$T3 movdqu ($Xip),$Xi movdqu ($Htbl),$Hkey movdqu 0x20($Htbl),$HK pshufb $T3,$Xi sub \$0x10,$len jz .Lodd_tail movdqu 0x10($Htbl),$Hkey2 ___ if ($do4xaggr) { my ($Xl,$Xm,$Xh,$Hkey3,$Hkey4)=map("%xmm$_",(11..15)); $code.=<<___; leaq GFp_ia32cap_P(%rip),%rax mov 4(%rax),%eax cmp \$0x30,$len jb .Lskip4x and \$`1<<26|1<<22`,%eax # isolate MOVBE+XSAVE cmp \$`1<<22`,%eax # check for MOVBE without XSAVE je .Lskip4x sub \$0x30,$len mov \$0xA040608020C0E000,%rax # ((7..0)·0xE0)&0xff movdqu 0x30($Htbl),$Hkey3 movdqu 0x40($Htbl),$Hkey4 ####### # Xi+4 =[(H*Ii+3) + (H^2*Ii+2) + (H^3*Ii+1) + H^4*(Ii+Xi)] mod P # movdqu 0x30($inp),$Xln movdqu 0x20($inp),$Xl pshufb $T3,$Xln pshufb $T3,$Xl movdqa $Xln,$Xhn pshufd \$0b01001110,$Xln,$Xmn pxor $Xln,$Xmn pclmulqdq \$0x00,$Hkey,$Xln pclmulqdq \$0x11,$Hkey,$Xhn pclmulqdq \$0x00,$HK,$Xmn movdqa $Xl,$Xh pshufd \$0b01001110,$Xl,$Xm pxor $Xl,$Xm pclmulqdq \$0x00,$Hkey2,$Xl pclmulqdq \$0x11,$Hkey2,$Xh pclmulqdq \$0x10,$HK,$Xm xorps $Xl,$Xln xorps $Xh,$Xhn movups 0x50($Htbl),$HK xorps $Xm,$Xmn movdqu 0x10($inp),$Xl movdqu 0($inp),$T1 pshufb $T3,$Xl pshufb $T3,$T1 movdqa $Xl,$Xh pshufd \$0b01001110,$Xl,$Xm pxor $T1,$Xi pxor $Xl,$Xm pclmulqdq \$0x00,$Hkey3,$Xl movdqa $Xi,$Xhi pshufd \$0b01001110,$Xi,$T1 pxor $Xi,$T1 pclmulqdq \$0x11,$Hkey3,$Xh pclmulqdq \$0x00,$HK,$Xm xorps $Xl,$Xln xorps $Xh,$Xhn lea 0x40($inp),$inp sub \$0x40,$len jc .Ltail4x jmp .Lmod4_loop .align 32 .Lmod4_loop: pclmulqdq \$0x00,$Hkey4,$Xi xorps $Xm,$Xmn movdqu 0x30($inp),$Xl pshufb $T3,$Xl pclmulqdq \$0x11,$Hkey4,$Xhi xorps $Xln,$Xi movdqu 0x20($inp),$Xln movdqa $Xl,$Xh pclmulqdq \$0x10,$HK,$T1 pshufd \$0b01001110,$Xl,$Xm xorps $Xhn,$Xhi pxor $Xl,$Xm pshufb $T3,$Xln movups 0x20($Htbl),$HK xorps $Xmn,$T1 pclmulqdq \$0x00,$Hkey,$Xl pshufd \$0b01001110,$Xln,$Xmn pxor $Xi,$T1 # aggregated Karatsuba post-processing movdqa $Xln,$Xhn pxor $Xhi,$T1 # pxor $Xln,$Xmn movdqa $T1,$T2 # pclmulqdq \$0x11,$Hkey,$Xh pslldq \$8,$T1 psrldq \$8,$T2 # pxor $T1,$Xi movdqa .L7_mask(%rip),$T1 pxor $T2,$Xhi # movq %rax,$T2 pand $Xi,$T1 # 1st phase pshufb $T1,$T2 # pxor $Xi,$T2 # pclmulqdq \$0x00,$HK,$Xm psllq \$57,$T2 # movdqa $T2,$T1 # pslldq \$8,$T2 pclmulqdq \$0x00,$Hkey2,$Xln psrldq \$8,$T1 # pxor $T2,$Xi pxor $T1,$Xhi # movdqu 0($inp),$T1 movdqa $Xi,$T2 # 2nd phase psrlq \$1,$Xi pclmulqdq \$0x11,$Hkey2,$Xhn xorps $Xl,$Xln movdqu 0x10($inp),$Xl pshufb $T3,$Xl pclmulqdq \$0x10,$HK,$Xmn xorps $Xh,$Xhn movups 0x50($Htbl),$HK pshufb $T3,$T1 pxor $T2,$Xhi # pxor $Xi,$T2 psrlq \$5,$Xi movdqa $Xl,$Xh pxor $Xm,$Xmn pshufd \$0b01001110,$Xl,$Xm pxor $T2,$Xi # pxor $T1,$Xhi pxor $Xl,$Xm pclmulqdq \$0x00,$Hkey3,$Xl psrlq \$1,$Xi # pxor $Xhi,$Xi # movdqa $Xi,$Xhi pclmulqdq \$0x11,$Hkey3,$Xh xorps $Xl,$Xln pshufd \$0b01001110,$Xi,$T1 pxor $Xi,$T1 pclmulqdq \$0x00,$HK,$Xm xorps $Xh,$Xhn lea 0x40($inp),$inp sub \$0x40,$len jnc .Lmod4_loop .Ltail4x: pclmulqdq \$0x00,$Hkey4,$Xi pclmulqdq \$0x11,$Hkey4,$Xhi pclmulqdq \$0x10,$HK,$T1 xorps $Xm,$Xmn xorps $Xln,$Xi xorps $Xhn,$Xhi pxor $Xi,$Xhi # aggregated Karatsuba post-processing pxor $Xmn,$T1 pxor $Xhi,$T1 # pxor $Xi,$Xhi movdqa $T1,$T2 # psrldq \$8,$T1 pslldq \$8,$T2 # pxor $T1,$Xhi pxor $T2,$Xi # ___ &reduction_alg9($Xhi,$Xi); $code.=<<___; add \$0x40,$len jz .Ldone movdqu 0x20($Htbl),$HK sub \$0x10,$len jz .Lodd_tail .Lskip4x: ___ } $code.=<<___; ####### # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = # [(H*Ii+1) + (H*Xi+1)] mod P = # [(H*Ii+1) + H^2*(Ii+Xi)] mod P # movdqu ($inp),$T1 # Ii movdqu 16($inp),$Xln # Ii+1 pshufb $T3,$T1 pshufb $T3,$Xln pxor $T1,$Xi # Ii+Xi movdqa $Xln,$Xhn pshufd \$0b01001110,$Xln,$Xmn pxor $Xln,$Xmn pclmulqdq \$0x00,$Hkey,$Xln pclmulqdq \$0x11,$Hkey,$Xhn pclmulqdq \$0x00,$HK,$Xmn lea 32($inp),$inp # i+=2 nop sub \$0x20,$len jbe .Leven_tail nop jmp .Lmod_loop .align 32 .Lmod_loop: movdqa $Xi,$Xhi movdqa $Xmn,$T1 pshufd \$0b01001110,$Xi,$Xmn # pxor $Xi,$Xmn # pclmulqdq \$0x00,$Hkey2,$Xi pclmulqdq \$0x11,$Hkey2,$Xhi pclmulqdq \$0x10,$HK,$Xmn pxor $Xln,$Xi # (H*Ii+1) + H^2*(Ii+Xi) pxor $Xhn,$Xhi movdqu ($inp),$T2 # Ii pxor $Xi,$T1 # aggregated Karatsuba post-processing pshufb $T3,$T2 movdqu 16($inp),$Xln # Ii+1 pxor $Xhi,$T1 pxor $T2,$Xhi # "Ii+Xi", consume early pxor $T1,$Xmn pshufb $T3,$Xln movdqa $Xmn,$T1 # psrldq \$8,$T1 pslldq \$8,$Xmn # pxor $T1,$Xhi pxor $Xmn,$Xi # movdqa $Xln,$Xhn # movdqa $Xi,$T2 # 1st phase movdqa $Xi,$T1 psllq \$5,$Xi pxor $Xi,$T1 # pclmulqdq \$0x00,$Hkey,$Xln ####### psllq \$1,$Xi pxor $T1,$Xi # psllq \$57,$Xi # movdqa $Xi,$T1 # pslldq \$8,$Xi psrldq \$8,$T1 # pxor $T2,$Xi pshufd \$0b01001110,$Xhn,$Xmn pxor $T1,$Xhi # pxor $Xhn,$Xmn # movdqa $Xi,$T2 # 2nd phase psrlq \$1,$Xi pclmulqdq \$0x11,$Hkey,$Xhn ####### pxor $T2,$Xhi # pxor $Xi,$T2 psrlq \$5,$Xi pxor $T2,$Xi # lea 32($inp),$inp psrlq \$1,$Xi # pclmulqdq \$0x00,$HK,$Xmn ####### pxor $Xhi,$Xi # sub \$0x20,$len ja .Lmod_loop .Leven_tail: movdqa $Xi,$Xhi movdqa $Xmn,$T1 pshufd \$0b01001110,$Xi,$Xmn # pxor $Xi,$Xmn # pclmulqdq \$0x00,$Hkey2,$Xi pclmulqdq \$0x11,$Hkey2,$Xhi pclmulqdq \$0x10,$HK,$Xmn pxor $Xln,$Xi # (H*Ii+1) + H^2*(Ii+Xi) pxor $Xhn,$Xhi pxor $Xi,$T1 pxor $Xhi,$T1 pxor $T1,$Xmn movdqa $Xmn,$T1 # psrldq \$8,$T1 pslldq \$8,$Xmn # pxor $T1,$Xhi pxor $Xmn,$Xi # ___ &reduction_alg9 ($Xhi,$Xi); $code.=<<___; test $len,$len jnz .Ldone .Lodd_tail: movdqu ($inp),$T1 # Ii pshufb $T3,$T1 pxor $T1,$Xi # Ii+Xi ___ &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H*(Ii+Xi) &reduction_alg9 ($Xhi,$Xi); $code.=<<___; .Ldone: pshufb $T3,$Xi movdqu $Xi,($Xip) ___ $code.=<<___ if ($win64); movaps (%rsp),%xmm6 movaps 0x10(%rsp),%xmm7 movaps 0x20(%rsp),%xmm8 movaps 0x30(%rsp),%xmm9 movaps 0x40(%rsp),%xmm10 movaps 0x50(%rsp),%xmm11 movaps 0x60(%rsp),%xmm12 movaps 0x70(%rsp),%xmm13 movaps 0x80(%rsp),%xmm14 movaps 0x90(%rsp),%xmm15 lea 0xa8(%rsp),%rsp .LSEH_end_GFp_gcm_ghash_clmul: ___ $code.=<<___; ret .cfi_endproc .size GFp_gcm_ghash_clmul,.-GFp_gcm_ghash_clmul ___ } $code.=<<___; .globl GFp_gcm_init_avx .type GFp_gcm_init_avx,\@abi-omnipotent .align 32 GFp_gcm_init_avx: .cfi_startproc ___ if ($avx) { my ($Htbl,$Xip)=@_4args; my $HK="%xmm6"; $code.=<<___ if ($win64); .LSEH_begin_GFp_gcm_init_avx: # I can't trust assembler to use specific encoding:-( .byte 0x48,0x83,0xec,0x18 #sub $0x18,%rsp .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp) ___ $code.=<<___; vzeroupper vmovdqu ($Xip),$Hkey vpshufd \$0b01001110,$Hkey,$Hkey # dword swap # <<1 twist vpshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword vpsrlq \$63,$Hkey,$T1 vpsllq \$1,$Hkey,$Hkey vpxor $T3,$T3,$T3 # vpcmpgtd $T2,$T3,$T3 # broadcast carry bit vpslldq \$8,$T1,$T1 vpor $T1,$Hkey,$Hkey # H<<=1 # magic reduction vpand .L0x1c2_polynomial(%rip),$T3,$T3 vpxor $T3,$Hkey,$Hkey # if(carry) H^=0x1c2_polynomial vpunpckhqdq $Hkey,$Hkey,$HK vmovdqa $Hkey,$Xi vpxor $Hkey,$HK,$HK mov \$4,%r10 # up to H^8 jmp .Linit_start_avx ___ sub clmul64x64_avx { my ($Xhi,$Xi,$Hkey,$HK)=@_; if (!defined($HK)) { $HK = $T2; $code.=<<___; vpunpckhqdq $Xi,$Xi,$T1 vpunpckhqdq $Hkey,$Hkey,$T2 vpxor $Xi,$T1,$T1 # vpxor $Hkey,$T2,$T2 ___ } else { $code.=<<___; vpunpckhqdq $Xi,$Xi,$T1 vpxor $Xi,$T1,$T1 # ___ } $code.=<<___; vpclmulqdq \$0x11,$Hkey,$Xi,$Xhi ####### vpclmulqdq \$0x00,$Hkey,$Xi,$Xi ####### vpclmulqdq \$0x00,$HK,$T1,$T1 ####### vpxor $Xi,$Xhi,$T2 # vpxor $T2,$T1,$T1 # vpslldq \$8,$T1,$T2 # vpsrldq \$8,$T1,$T1 vpxor $T2,$Xi,$Xi # vpxor $T1,$Xhi,$Xhi ___ } sub reduction_avx { my ($Xhi,$Xi) = @_; $code.=<<___; vpsllq \$57,$Xi,$T1 # 1st phase vpsllq \$62,$Xi,$T2 vpxor $T1,$T2,$T2 # vpsllq \$63,$Xi,$T1 vpxor $T1,$T2,$T2 # vpslldq \$8,$T2,$T1 # vpsrldq \$8,$T2,$T2 vpxor $T1,$Xi,$Xi # vpxor $T2,$Xhi,$Xhi vpsrlq \$1,$Xi,$T2 # 2nd phase vpxor $Xi,$Xhi,$Xhi vpxor $T2,$Xi,$Xi # vpsrlq \$5,$T2,$T2 vpxor $T2,$Xi,$Xi # vpsrlq \$1,$Xi,$Xi # vpxor $Xhi,$Xi,$Xi # ___ } $code.=<<___; .align 32 .Linit_loop_avx: vpalignr \$8,$T1,$T2,$T3 # low part is H.lo^H.hi... vmovdqu $T3,-0x10($Htbl) # save Karatsuba "salt" ___ &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK); # calculate H^3,5,7 &reduction_avx ($Xhi,$Xi); $code.=<<___; .Linit_start_avx: vmovdqa $Xi,$T3 ___ &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK); # calculate H^2,4,6,8 &reduction_avx ($Xhi,$Xi); $code.=<<___; vpshufd \$0b01001110,$T3,$T1 vpshufd \$0b01001110,$Xi,$T2 vpxor $T3,$T1,$T1 # Karatsuba pre-processing vmovdqu $T3,0x00($Htbl) # save H^1,3,5,7 vpxor $Xi,$T2,$T2 # Karatsuba pre-processing vmovdqu $Xi,0x10($Htbl) # save H^2,4,6,8 lea 0x30($Htbl),$Htbl sub \$1,%r10 jnz .Linit_loop_avx vpalignr \$8,$T2,$T1,$T3 # last "salt" is flipped vmovdqu $T3,-0x10($Htbl) vzeroupper ___ $code.=<<___ if ($win64); movaps (%rsp),%xmm6 lea 0x18(%rsp),%rsp .LSEH_end_GFp_gcm_init_avx: ___ $code.=<<___; ret .cfi_endproc .size GFp_gcm_init_avx,.-GFp_gcm_init_avx ___ } else { $code.=<<___; jmp .L_init_clmul .size GFp_gcm_init_avx,.-GFp_gcm_init_avx ___ } $code.=<<___; .globl GFp_gcm_ghash_avx .type GFp_gcm_ghash_avx,\@abi-omnipotent .align 32 GFp_gcm_ghash_avx: .cfi_startproc ___ if ($avx) { my ($Xip,$Htbl,$inp,$len)=@_4args; my ($Xlo,$Xhi,$Xmi, $Zlo,$Zhi,$Zmi, $Hkey,$HK,$T1,$T2, $Xi,$Xo,$Tred,$bswap,$Ii,$Ij) = map("%xmm$_",(0..15)); $code.=<<___ if ($win64); lea -0x88(%rsp),%rax .LSEH_begin_GFp_gcm_ghash_avx: # I can't trust assembler to use specific encoding:-( .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6,-0x20(%rax) .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7,-0x10(%rax) .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8,0(%rax) .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9,0x10(%rax) .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10,0x20(%rax) .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11,0x30(%rax) .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12,0x40(%rax) .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13,0x50(%rax) .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14,0x60(%rax) .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15,0x70(%rax) ___ $code.=<<___; vzeroupper vmovdqu ($Xip),$Xi # load $Xi lea .L0x1c2_polynomial(%rip),%r10 lea 0x40($Htbl),$Htbl # size optimization vmovdqu .Lbswap_mask(%rip),$bswap vpshufb $bswap,$Xi,$Xi cmp \$0x80,$len jb .Lshort_avx sub \$0x80,$len vmovdqu 0x70($inp),$Ii # I[7] vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1 vpshufb $bswap,$Ii,$Ii vmovdqu 0x20-0x40($Htbl),$HK vpunpckhqdq $Ii,$Ii,$T2 vmovdqu 0x60($inp),$Ij # I[6] vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpxor $Ii,$T2,$T2 vpshufb $bswap,$Ij,$Ij vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2 vpunpckhqdq $Ij,$Ij,$T1 vmovdqu 0x50($inp),$Ii # I[5] vpclmulqdq \$0x00,$HK,$T2,$Xmi vpxor $Ij,$T1,$T1 vpshufb $bswap,$Ii,$Ii vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo vpunpckhqdq $Ii,$Ii,$T2 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3 vpxor $Ii,$T2,$T2 vmovdqu 0x40($inp),$Ij # I[4] vpclmulqdq \$0x10,$HK,$T1,$Zmi vmovdqu 0x50-0x40($Htbl),$HK vpshufb $bswap,$Ij,$Ij vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpxor $Xhi,$Zhi,$Zhi vpunpckhqdq $Ij,$Ij,$T1 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4 vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T2,$Xmi vpxor $Ij,$T1,$T1 vmovdqu 0x30($inp),$Ii # I[3] vpxor $Zlo,$Xlo,$Xlo vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo vpxor $Zhi,$Xhi,$Xhi vpshufb $bswap,$Ii,$Ii vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5 vpxor $Zmi,$Xmi,$Xmi vpunpckhqdq $Ii,$Ii,$T2 vpclmulqdq \$0x10,$HK,$T1,$Zmi vmovdqu 0x80-0x40($Htbl),$HK vpxor $Ii,$T2,$T2 vmovdqu 0x20($inp),$Ij # I[2] vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpxor $Xhi,$Zhi,$Zhi vpshufb $bswap,$Ij,$Ij vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6 vpxor $Xmi,$Zmi,$Zmi vpunpckhqdq $Ij,$Ij,$T1 vpclmulqdq \$0x00,$HK,$T2,$Xmi vpxor $Ij,$T1,$T1 vmovdqu 0x10($inp),$Ii # I[1] vpxor $Zlo,$Xlo,$Xlo vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo vpxor $Zhi,$Xhi,$Xhi vpshufb $bswap,$Ii,$Ii vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7 vpxor $Zmi,$Xmi,$Xmi vpunpckhqdq $Ii,$Ii,$T2 vpclmulqdq \$0x10,$HK,$T1,$Zmi vmovdqu 0xb0-0x40($Htbl),$HK vpxor $Ii,$T2,$T2 vmovdqu ($inp),$Ij # I[0] vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpxor $Xhi,$Zhi,$Zhi vpshufb $bswap,$Ij,$Ij vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vmovdqu 0xa0-0x40($Htbl),$Hkey # $Hkey^8 vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x10,$HK,$T2,$Xmi lea 0x80($inp),$inp cmp \$0x80,$len jb .Ltail_avx vpxor $Xi,$Ij,$Ij # accumulate $Xi sub \$0x80,$len jmp .Loop8x_avx .align 32 .Loop8x_avx: vpunpckhqdq $Ij,$Ij,$T1 vmovdqu 0x70($inp),$Ii # I[7] vpxor $Xlo,$Zlo,$Zlo vpxor $Ij,$T1,$T1 vpclmulqdq \$0x00,$Hkey,$Ij,$Xi vpshufb $bswap,$Ii,$Ii vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xo vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1 vpunpckhqdq $Ii,$Ii,$T2 vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Tred vmovdqu 0x20-0x40($Htbl),$HK vpxor $Ii,$T2,$T2 vmovdqu 0x60($inp),$Ij # I[6] vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpxor $Zlo,$Xi,$Xi # collect result vpshufb $bswap,$Ij,$Ij vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vxorps $Zhi,$Xo,$Xo vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2 vpunpckhqdq $Ij,$Ij,$T1 vpclmulqdq \$0x00,$HK, $T2,$Xmi vpxor $Zmi,$Tred,$Tred vxorps $Ij,$T1,$T1 vmovdqu 0x50($inp),$Ii # I[5] vpxor $Xi,$Tred,$Tred # aggregated Karatsuba post-processing vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo vpxor $Xo,$Tred,$Tred vpslldq \$8,$Tred,$T2 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi vpsrldq \$8,$Tred,$Tred vpxor $T2, $Xi, $Xi vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3 vpshufb $bswap,$Ii,$Ii vxorps $Tred,$Xo, $Xo vpxor $Xhi,$Zhi,$Zhi vpunpckhqdq $Ii,$Ii,$T2 vpclmulqdq \$0x10,$HK, $T1,$Zmi vmovdqu 0x50-0x40($Htbl),$HK vpxor $Ii,$T2,$T2 vpxor $Xmi,$Zmi,$Zmi vmovdqu 0x40($inp),$Ij # I[4] vpalignr \$8,$Xi,$Xi,$Tred # 1st phase vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpshufb $bswap,$Ij,$Ij vpxor $Zlo,$Xlo,$Xlo vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4 vpunpckhqdq $Ij,$Ij,$T1 vpxor $Zhi,$Xhi,$Xhi vpclmulqdq \$0x00,$HK, $T2,$Xmi vxorps $Ij,$T1,$T1 vpxor $Zmi,$Xmi,$Xmi vmovdqu 0x30($inp),$Ii # I[3] vpclmulqdq \$0x10,(%r10),$Xi,$Xi vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo vpshufb $bswap,$Ii,$Ii vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5 vpunpckhqdq $Ii,$Ii,$T2 vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x10,$HK, $T1,$Zmi vmovdqu 0x80-0x40($Htbl),$HK vpxor $Ii,$T2,$T2 vpxor $Xmi,$Zmi,$Zmi vmovdqu 0x20($inp),$Ij # I[2] vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpshufb $bswap,$Ij,$Ij vpxor $Zlo,$Xlo,$Xlo vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6 vpunpckhqdq $Ij,$Ij,$T1 vpxor $Zhi,$Xhi,$Xhi vpclmulqdq \$0x00,$HK, $T2,$Xmi vpxor $Ij,$T1,$T1 vpxor $Zmi,$Xmi,$Xmi vxorps $Tred,$Xi,$Xi vmovdqu 0x10($inp),$Ii # I[1] vpalignr \$8,$Xi,$Xi,$Tred # 2nd phase vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo vpshufb $bswap,$Ii,$Ii vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7 vpclmulqdq \$0x10,(%r10),$Xi,$Xi vxorps $Xo,$Tred,$Tred vpunpckhqdq $Ii,$Ii,$T2 vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x10,$HK, $T1,$Zmi vmovdqu 0xb0-0x40($Htbl),$HK vpxor $Ii,$T2,$T2 vpxor $Xmi,$Zmi,$Zmi vmovdqu ($inp),$Ij # I[0] vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo vpshufb $bswap,$Ij,$Ij vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi vmovdqu 0xa0-0x40($Htbl),$Hkey # $Hkey^8 vpxor $Tred,$Ij,$Ij vpclmulqdq \$0x10,$HK, $T2,$Xmi vpxor $Xi,$Ij,$Ij # accumulate $Xi lea 0x80($inp),$inp sub \$0x80,$len jnc .Loop8x_avx add \$0x80,$len jmp .Ltail_no_xor_avx .align 32 .Lshort_avx: vmovdqu -0x10($inp,$len),$Ii # very last word lea ($inp,$len),$inp vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1 vmovdqu 0x20-0x40($Htbl),$HK vpshufb $bswap,$Ii,$Ij vmovdqa $Xlo,$Zlo # subtle way to zero $Zlo, vmovdqa $Xhi,$Zhi # $Zhi and vmovdqa $Xmi,$Zmi # $Zmi sub \$0x10,$len jz .Ltail_avx vpunpckhqdq $Ij,$Ij,$T1 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo vpxor $Ij,$T1,$T1 vmovdqu -0x20($inp),$Ii vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2 vpshufb $bswap,$Ii,$Ij vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Xmi vpsrldq \$8,$HK,$HK sub \$0x10,$len jz .Ltail_avx vpunpckhqdq $Ij,$Ij,$T1 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo vpxor $Ij,$T1,$T1 vmovdqu -0x30($inp),$Ii vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3 vpshufb $bswap,$Ii,$Ij vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Xmi vmovdqu 0x50-0x40($Htbl),$HK sub \$0x10,$len jz .Ltail_avx vpunpckhqdq $Ij,$Ij,$T1 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo vpxor $Ij,$T1,$T1 vmovdqu -0x40($inp),$Ii vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4 vpshufb $bswap,$Ii,$Ij vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Xmi vpsrldq \$8,$HK,$HK sub \$0x10,$len jz .Ltail_avx vpunpckhqdq $Ij,$Ij,$T1 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo vpxor $Ij,$T1,$T1 vmovdqu -0x50($inp),$Ii vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5 vpshufb $bswap,$Ii,$Ij vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Xmi vmovdqu 0x80-0x40($Htbl),$HK sub \$0x10,$len jz .Ltail_avx vpunpckhqdq $Ij,$Ij,$T1 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo vpxor $Ij,$T1,$T1 vmovdqu -0x60($inp),$Ii vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6 vpshufb $bswap,$Ii,$Ij vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Xmi vpsrldq \$8,$HK,$HK sub \$0x10,$len jz .Ltail_avx vpunpckhqdq $Ij,$Ij,$T1 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo vpxor $Ij,$T1,$T1 vmovdqu -0x70($inp),$Ii vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7 vpshufb $bswap,$Ii,$Ij vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Xmi vmovq 0xb8-0x40($Htbl),$HK sub \$0x10,$len jmp .Ltail_avx .align 32 .Ltail_avx: vpxor $Xi,$Ij,$Ij # accumulate $Xi .Ltail_no_xor_avx: vpunpckhqdq $Ij,$Ij,$T1 vpxor $Xlo,$Zlo,$Zlo vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo vpxor $Ij,$T1,$T1 vpxor $Xhi,$Zhi,$Zhi vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi vpxor $Xmi,$Zmi,$Zmi vpclmulqdq \$0x00,$HK,$T1,$Xmi vmovdqu (%r10),$Tred vpxor $Xlo,$Zlo,$Xi vpxor $Xhi,$Zhi,$Xo vpxor $Xmi,$Zmi,$Zmi vpxor $Xi, $Zmi,$Zmi # aggregated Karatsuba post-processing vpxor $Xo, $Zmi,$Zmi vpslldq \$8, $Zmi,$T2 vpsrldq \$8, $Zmi,$Zmi vpxor $T2, $Xi, $Xi vpxor $Zmi,$Xo, $Xo vpclmulqdq \$0x10,$Tred,$Xi,$T2 # 1st phase vpalignr \$8,$Xi,$Xi,$Xi vpxor $T2,$Xi,$Xi vpclmulqdq \$0x10,$Tred,$Xi,$T2 # 2nd phase vpalignr \$8,$Xi,$Xi,$Xi vpxor $Xo,$Xi,$Xi vpxor $T2,$Xi,$Xi cmp \$0,$len jne .Lshort_avx vpshufb $bswap,$Xi,$Xi vmovdqu $Xi,($Xip) vzeroupper ___ $code.=<<___ if ($win64); movaps (%rsp),%xmm6 movaps 0x10(%rsp),%xmm7 movaps 0x20(%rsp),%xmm8 movaps 0x30(%rsp),%xmm9 movaps 0x40(%rsp),%xmm10 movaps 0x50(%rsp),%xmm11 movaps 0x60(%rsp),%xmm12 movaps 0x70(%rsp),%xmm13 movaps 0x80(%rsp),%xmm14 movaps 0x90(%rsp),%xmm15 lea 0xa8(%rsp),%rsp .LSEH_end_GFp_gcm_ghash_avx: ___ $code.=<<___; ret .cfi_endproc .size GFp_gcm_ghash_avx,.-GFp_gcm_ghash_avx ___ } else { $code.=<<___; jmp .L_ghash_clmul .size GFp_gcm_ghash_avx,.-GFp_gcm_ghash_avx ___ } $code.=<<___; .align 64 .Lbswap_mask: .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 .L0x1c2_polynomial: .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2 .L7_mask: .long 7,0,7,0 .align 64 .asciz "GHASH for x86_64, CRYPTOGAMS by " .align 64 ___ if ($win64) { $code.=<<___; .section .pdata .align 4 .rva .LSEH_begin_GFp_gcm_init_clmul .rva .LSEH_end_GFp_gcm_init_clmul .rva .LSEH_info_GFp_gcm_init_clmul .rva .LSEH_begin_GFp_gcm_ghash_clmul .rva .LSEH_end_GFp_gcm_ghash_clmul .rva .LSEH_info_GFp_gcm_ghash_clmul ___ $code.=<<___ if ($avx); .rva .LSEH_begin_GFp_gcm_init_avx .rva .LSEH_end_GFp_gcm_init_avx .rva .LSEH_info_GFp_gcm_init_clmul .rva .LSEH_begin_GFp_gcm_ghash_avx .rva .LSEH_end_GFp_gcm_ghash_avx .rva .LSEH_info_GFp_gcm_ghash_clmul ___ $code.=<<___; .section .xdata .align 8 .LSEH_info_GFp_gcm_init_clmul: .byte 0x01,0x08,0x03,0x00 .byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6 .byte 0x04,0x22,0x00,0x00 #sub rsp,0x18 .LSEH_info_GFp_gcm_ghash_clmul: .byte 0x01,0x33,0x16,0x00 .byte 0x33,0xf8,0x09,0x00 #movaps 0x90(rsp),xmm15 .byte 0x2e,0xe8,0x08,0x00 #movaps 0x80(rsp),xmm14 .byte 0x29,0xd8,0x07,0x00 #movaps 0x70(rsp),xmm13 .byte 0x24,0xc8,0x06,0x00 #movaps 0x60(rsp),xmm12 .byte 0x1f,0xb8,0x05,0x00 #movaps 0x50(rsp),xmm11 .byte 0x1a,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10 .byte 0x15,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9 .byte 0x10,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8 .byte 0x0c,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7 .byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6 .byte 0x04,0x01,0x15,0x00 #sub rsp,0xa8 ___ } $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT or die "error closing STDOUT";