#include "parser_test.h" #include #include #include #include "flatbuffers/idl.h" #include "test_assert.h" namespace flatbuffers { namespace tests { namespace { // Shortcuts for the infinity. static const auto infinity_f = std::numeric_limits::infinity(); static const auto infinity_d = std::numeric_limits::infinity(); // Test that parser errors are actually generated. static void TestError_(const char *src, const char *error_substr, bool strict_json, const char *file, int line, const char *func) { flatbuffers::IDLOptions opts; opts.strict_json = strict_json; flatbuffers::Parser parser(opts); if (parser.Parse(src)) { TestFail("true", "false", ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line, func); } else if (!strstr(parser.error_.c_str(), error_substr)) { TestFail(error_substr, parser.error_.c_str(), ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line, func); } } static void TestError_(const char *src, const char *error_substr, const char *file, int line, const char *func) { TestError_(src, error_substr, false, file, line, func); } #ifdef _WIN32 # define TestError(src, ...) \ TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__) #else # define TestError(src, ...) \ TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__) #endif static bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; } } // namespace // Test that parsing errors occur as we'd expect. // Also useful for coverage, making sure these paths are run. void ErrorTest() { // In order they appear in idl_parser.cpp TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit"); TestError("\"\0", "illegal"); TestError("\"\\q", "escape code"); TestError("table ///", "documentation"); TestError("@", "illegal"); TestError("table 1", "expecting"); TestError("table X { Y:[[int]]; }", "nested vector"); TestError("table X { Y:1; }", "illegal type"); TestError("table X { Y:int; Y:int; }", "field already"); TestError("table Y {} table X { Y:int; }", "same as table"); TestError("struct X { Y:string; }", "only scalar"); TestError("struct X { a:uint = 42; }", "default values"); TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum"); TestError("struct X { Y:int (deprecated); }", "deprecate"); TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }", "missing type field"); TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {", "type id"); TestError("table X { Y:int; } root_type X; { Z:", "unknown field"); TestError("table X { Y:int; } root_type X; { Y:", "string constant", true); TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant", true); TestError( "struct X { Y:int; Z:int; } table W { V:X; } root_type W; " "{ V:{ Y:1 } }", "wrong number"); TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }", "unknown enum value"); TestError("table X { Y:byte; } root_type X; { Y:; }", "starting"); TestError("enum X:byte { Y } enum X {", "enum already"); TestError("enum X:float {}", "underlying"); TestError("enum X:byte { Y, Y }", "value already"); TestError("enum X:byte { Y=2, Z=2 }", "unique"); TestError("enum X:byte (force_align: 4) { Y }", "force_align"); TestError("table X { Y:int; } table X {", "datatype already"); TestError("table X { } union X { }", "datatype already"); TestError("union X { } table X { }", "datatype already"); TestError("namespace A; table X { } namespace A; union X { }", "datatype already"); TestError("namespace A; union X { } namespace A; table X { }", "datatype already"); TestError("struct X (force_align: 7) { Y:int; }", "force_align"); TestError("struct X {}", "size 0"); TestError("{}", "no root"); TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file"); TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }", "end of file"); TestError("root_type X;", "unknown root"); TestError("struct X { Y:int; } root_type X;", "a table"); TestError("union X { Y }", "referenced"); TestError("union Z { X } struct X { Y:int; }", "only tables"); TestError("table X { Y:[int]; YLength:int; }", "clash"); TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once"); // float to integer conversion is forbidden TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float"); TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float"); TestError("enum X:bool { Y = true }", "must be integral"); // Array of non-scalar TestError("table X { x:int; } struct Y { y:[X:2]; }", "may contain only scalar or struct fields"); // Non-snake case field names TestError("table X { Y: int; } root_type Y: {Y:1.0}", "snake_case"); // Complex defaults TestError("table X { y: string = 1; }", "expecting: string"); TestError("table X { y: string = []; }", " Cannot assign token"); TestError("table X { y: [int] = [1]; }", "Expected `]`"); TestError("table X { y: [int] = [; }", "Expected `]`"); TestError("table X { y: [int] = \"\"; }", "type mismatch"); // An identifier can't start from sign (+|-) TestError("table X { -Y: int; } root_type Y: {Y:1.0}", "identifier"); TestError("table X { +Y: int; } root_type Y: {Y:1.0}", "identifier"); // Offset64 TestError("table X { a:int (vector64); }", "`vector64` attribute"); TestError("table X { a:int (offset64); }", "`offset64` attribute"); TestError("table X { a:string (vector64); }", "`vector64` attribute"); TestError("table y { a:int; } table X { a:y (offset64); }", "`offset64` attribute"); TestError("struct y { a:int; } table X { a:y (offset64); }", "`offset64` attribute"); TestError("table y { a:int; } table X { a:y (vector64); }", "`vector64` attribute"); TestError("union Y { } table X { ys:Y (offset64); }", "`offset64` attribute"); TestError("table Y { a:int; } table X { ys:[Y] (offset64); }", "only vectors of scalars are allowed to be 64-bit."); TestError("table Y { a:int; } table X { ys:[Y] (vector64); }", "only vectors of scalars are allowed to be 64-bit."); TestError("union Y { } table X { ys:[Y] (vector64); }", "only vectors of scalars are allowed to be 64-bit."); // TOOD(derekbailey): the following three could be allowed once the code gen // supports the output. TestError("table X { y:[string] (offset64); }", "only vectors of scalars are allowed to be 64-bit."); TestError("table X { y:[string] (vector64); }", "only vectors of scalars are allowed to be 64-bit."); TestError("enum X:byte {Z} table X { y:[X] (offset64); }", "only vectors of scalars are allowed to be 64-bit."); } void EnumOutOfRangeTest() { TestError("enum X:byte { Y = 128 }", "enum value does not fit"); TestError("enum X:byte { Y = -129 }", "enum value does not fit"); TestError("enum X:byte { Y = 126, Z0, Z1 }", "enum value does not fit"); TestError("enum X:ubyte { Y = -1 }", "enum value does not fit"); TestError("enum X:ubyte { Y = 256 }", "enum value does not fit"); TestError("enum X:ubyte { Y = 255, Z }", "enum value does not fit"); TestError("table Y{} union X { Y = -1 }", "enum value does not fit"); TestError("table Y{} union X { Y = 256 }", "enum value does not fit"); TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit"); TestError("enum X:int { Y = -2147483649 }", "enum value does not fit"); TestError("enum X:int { Y = 2147483648 }", "enum value does not fit"); TestError("enum X:uint { Y = -1 }", "enum value does not fit"); TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit"); TestError("enum X:long { Y = 9223372036854775808 }", "does not fit"); TestError("enum X:long { Y = 9223372036854775807, Z }", "enum value does not fit"); TestError("enum X:ulong { Y = -1 }", "does not fit"); TestError("enum X:ubyte (bit_flags) { Y=8 }", "bit flag out"); TestError("enum X:byte (bit_flags) { Y=7 }", "must be unsigned"); // -128 // bit_flgs out of range TestError("enum X:ubyte (bit_flags) { Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8 }", "out of range"); } void IntegerOutOfRangeTest() { TestError("table T { F:byte; } root_type T; { F:128 }", "constant does not fit"); TestError("table T { F:byte; } root_type T; { F:-129 }", "constant does not fit"); TestError("table T { F:ubyte; } root_type T; { F:256 }", "constant does not fit"); TestError("table T { F:ubyte; } root_type T; { F:-1 }", "constant does not fit"); TestError("table T { F:short; } root_type T; { F:32768 }", "constant does not fit"); TestError("table T { F:short; } root_type T; { F:-32769 }", "constant does not fit"); TestError("table T { F:ushort; } root_type T; { F:65536 }", "constant does not fit"); TestError("table T { F:ushort; } root_type T; { F:-1 }", "constant does not fit"); TestError("table T { F:int; } root_type T; { F:2147483648 }", "constant does not fit"); TestError("table T { F:int; } root_type T; { F:-2147483649 }", "constant does not fit"); TestError("table T { F:uint; } root_type T; { F:4294967296 }", "constant does not fit"); TestError("table T { F:uint; } root_type T; { F:-1 }", "constant does not fit"); // Check fixed width aliases TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit"); TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit"); TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit"); TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit"); TestError("table X { Y:uint32; } root_type X; { Y: -1 }", ""); TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }", "does not fit"); TestError("table X { Y:uint64; } root_type X; { Y: -1 }", ""); TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }", "does not fit"); TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }", "does not fit"); TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit"); TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit"); TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit"); TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit"); TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", ""); TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }", "does not fit"); TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }", "does not fit"); TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }", "does not fit"); // check out-of-int64 as int8 TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }", "does not fit"); TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }", "does not fit"); // Check default values TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}", "does not fit"); TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}", "does not fit"); TestError("table X { Y:uint64; } root_type X; { Y: -1 }", ""); TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}", "does not fit"); TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}", "does not fit"); } void InvalidFloatTest() { auto invalid_msg = "invalid number"; auto comma_msg = "expecting: ,"; TestError("table T { F:float; } root_type T; { F:1,0 }", ""); TestError("table T { F:float; } root_type T; { F:. }", ""); TestError("table T { F:float; } root_type T; { F:- }", invalid_msg); TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg); TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg); TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg); TestError("table T { F:float; } root_type T; { F:.e }", ""); TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg); TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg); TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg); TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg); TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg); // exponent pP is mandatory for hex-float TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0Xe }", invalid_msg); TestError("table T { F:float; } root_type T; { F:\"0Xe\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:\"nan(1)\" }", invalid_msg); // eE not exponent in hex-float! TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg); TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg); TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg); // floats in string TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg); // disable escapes for "number-in-string" TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid"); TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid"); TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid"); TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid"); TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid"); TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg); // null is not a number constant! TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:null }", invalid_msg); } void UnicodeInvalidSurrogatesTest() { TestError( "table T { F:string; }" "root_type T;" "{ F:\"\\uD800\"}", "unpaired high surrogate"); TestError( "table T { F:string; }" "root_type T;" "{ F:\"\\uD800abcd\"}", "unpaired high surrogate"); TestError( "table T { F:string; }" "root_type T;" "{ F:\"\\uD800\\n\"}", "unpaired high surrogate"); TestError( "table T { F:string; }" "root_type T;" "{ F:\"\\uD800\\uD800\"}", "multiple high surrogates"); TestError( "table T { F:string; }" "root_type T;" "{ F:\"\\uDC00\"}", "unpaired low surrogate"); } void InvalidUTF8Test() { // "1 byte" pattern, under min length of 2 bytes TestError( "table T { F:string; }" "root_type T;" "{ F:\"\x80\"}", "illegal UTF-8 sequence"); // 2 byte pattern, string too short TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xDF\"}", "illegal UTF-8 sequence"); // 3 byte pattern, string too short TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xEF\xBF\"}", "illegal UTF-8 sequence"); // 4 byte pattern, string too short TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xF7\xBF\xBF\"}", "illegal UTF-8 sequence"); // "5 byte" pattern, string too short TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xFB\xBF\xBF\xBF\"}", "illegal UTF-8 sequence"); // "6 byte" pattern, string too short TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xFD\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence"); // "7 byte" pattern, string too short TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence"); // "5 byte" pattern, over max length of 4 bytes TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xFB\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence"); // "6 byte" pattern, over max length of 4 bytes TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence"); // "7 byte" pattern, over max length of 4 bytes TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence"); // Three invalid encodings for U+000A (\n, aka NEWLINE) TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xC0\x8A\"}", "illegal UTF-8 sequence"); TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xE0\x80\x8A\"}", "illegal UTF-8 sequence"); TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xF0\x80\x80\x8A\"}", "illegal UTF-8 sequence"); // Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL) TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xE0\x81\xA9\"}", "illegal UTF-8 sequence"); TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xF0\x80\x81\xA9\"}", "illegal UTF-8 sequence"); // Invalid encoding for U+20AC (EURO SYMBOL) TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xF0\x82\x82\xAC\"}", "illegal UTF-8 sequence"); // UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in // UTF-8 TestError( "table T { F:string; }" "root_type T;" // U+10400 "encoded" as U+D801 U+DC00 "{ F:\"\xED\xA0\x81\xED\xB0\x80\"}", "illegal UTF-8 sequence"); // Check independence of identifier from locale. std::string locale_ident; locale_ident += "table T { F"; locale_ident += static_cast(-32); // unsigned 0xE0 locale_ident += " :string; }"; locale_ident += "root_type T;"; locale_ident += "{}"; TestError(locale_ident.c_str(), ""); } template T TestValue(const char *json, const char *type_name, const char *decls = nullptr) { flatbuffers::Parser parser; parser.builder_.ForceDefaults(true); // return defaults auto check_default = json ? false : true; if (check_default) { parser.opts.output_default_scalars_in_json = true; } // Simple schema. std::string schema = std::string(decls ? decls : "") + "\n" + "table X { y:" + std::string(type_name) + "; } root_type X;"; auto schema_done = parser.Parse(schema.c_str()); TEST_EQ_STR(parser.error_.c_str(), ""); TEST_EQ(schema_done, true); auto done = parser.Parse(check_default ? "{}" : json); TEST_EQ_STR(parser.error_.c_str(), ""); TEST_EQ(done, true); // Check with print. std::string print_back; parser.opts.indent_step = -1; TEST_NULL(GenText(parser, parser.builder_.GetBufferPointer(), &print_back)); // restore value from its default if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); } auto root = flatbuffers::GetRoot( parser.builder_.GetBufferPointer()); return root->GetField(flatbuffers::FieldIndexToOffset(0), 0); } // Additional parser testing not covered elsewhere. void ValueTest() { // Test scientific notation numbers. TEST_EQ( FloatCompare(TestValue("{ y:0.0314159e+2 }", "float"), 3.14159f), true); // number in string TEST_EQ(FloatCompare(TestValue("{ y:\"0.0314159e+2\" }", "float"), 3.14159f), true); // Test conversion functions. TEST_EQ(FloatCompare(TestValue("{ y:cos(rad(180)) }", "float"), -1), true); // int embedded to string TEST_EQ(TestValue("{ y:\"-876\" }", "int=-123"), -876); TEST_EQ(TestValue("{ y:\"876\" }", "int=-123"), 876); // Test negative hex constant. TEST_EQ(TestValue("{ y:-0x8ea0 }", "int=-0x8ea0"), -36512); TEST_EQ(TestValue(nullptr, "int=-0x8ea0"), -36512); // positive hex constant TEST_EQ(TestValue("{ y:0x1abcdef }", "int=0x1"), 0x1abcdef); // with optional '+' sign TEST_EQ(TestValue("{ y:+0x1abcdef }", "int=+0x1"), 0x1abcdef); // hex in string TEST_EQ(TestValue("{ y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef); // Make sure we do unsigned 64bit correctly. TEST_EQ(TestValue("{ y:12335089644688340133 }", "ulong"), 12335089644688340133ULL); // bool in string TEST_EQ(TestValue("{ y:\"false\" }", "bool=true"), false); TEST_EQ(TestValue("{ y:\"true\" }", "bool=\"true\""), true); TEST_EQ(TestValue("{ y:'false' }", "bool=true"), false); TEST_EQ(TestValue("{ y:'true' }", "bool=\"true\""), true); // check comments before and after json object TEST_EQ(TestValue("/*before*/ { y:1 } /*after*/", "int"), 1); TEST_EQ(TestValue("//before \n { y:1 } //after", "int"), 1); } void NestedListTest() { flatbuffers::Parser parser1; TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }" "root_type T;" "{ F:[ [10,20], [30,40]] }"), true); } void EnumStringsTest() { flatbuffers::Parser parser1; TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }" "root_type T;" "{ F:[ A, B, \"C\", \"A B C\" ] }"), true); flatbuffers::Parser parser2; TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }" "root_type T;" "{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"), true); // unsigned bit_flags flatbuffers::Parser parser3; TEST_EQ( parser3.Parse("enum E:uint16 (bit_flags) { F0, F07=7, F08, F14=14, F15 }" " table T { F: E = \"F15 F08\"; }" "root_type T;"), true); } void EnumValueTest() { // json: "{ Y:0 }", schema: table X { y: "E"} // 0 in enum (V=0) E then Y=0 is valid. TEST_EQ(TestValue("{ y:0 }", "E", "enum E:int { V }"), 0); TEST_EQ(TestValue("{ y:V }", "E", "enum E:int { V }"), 0); // A default value of Y is 0. TEST_EQ(TestValue("{ }", "E", "enum E:int { V }"), 0); TEST_EQ(TestValue("{ y:5 }", "E=V", "enum E:int { V=5 }"), 5); // Generate json with defaults and check. TEST_EQ(TestValue(nullptr, "E=V", "enum E:int { V=5 }"), 5); // 5 in enum TEST_EQ(TestValue("{ y:5 }", "E", "enum E:int { Z, V=5 }"), 5); TEST_EQ(TestValue("{ y:5 }", "E=V", "enum E:int { Z, V=5 }"), 5); // Generate json with defaults and check. TEST_EQ(TestValue(nullptr, "E", "enum E:int { Z, V=5 }"), 0); TEST_EQ(TestValue(nullptr, "E=V", "enum E:int { Z, V=5 }"), 5); // u84 test TEST_EQ(TestValue(nullptr, "E=V", "enum E:ulong { V = 13835058055282163712 }"), 13835058055282163712ULL); TEST_EQ(TestValue(nullptr, "E=V", "enum E:ulong { V = 18446744073709551615 }"), 18446744073709551615ULL); // Assign non-enum value to enum field. Is it right? TEST_EQ(TestValue("{ y:7 }", "E", "enum E:int { V = 0 }"), 7); // Check that non-ascending values are valid. TEST_EQ(TestValue("{ y:5 }", "E=V", "enum E:int { Z=10, V=5 }"), 5); } void IntegerBoundaryTest() { // Check numerical compatibility with non-C++ languages. // By the C++ standard, std::numerical_limits::min() == // -9223372036854775807 (-2^63+1) or less* The Flatbuffers grammar and most of // the languages (C#, Java, Rust) expect that minimum values are: -128, // -32768,.., -9223372036854775808. Since C++20, // static_cast(0x8000000000000000ULL) is well-defined two's complement // cast. Therefore -9223372036854775808 should be valid negative value. TEST_EQ(flatbuffers::numeric_limits::min(), -128); TEST_EQ(flatbuffers::numeric_limits::max(), 127); TEST_EQ(flatbuffers::numeric_limits::min(), -32768); TEST_EQ(flatbuffers::numeric_limits::max(), 32767); TEST_EQ(flatbuffers::numeric_limits::min() + 1, -2147483647); TEST_EQ(flatbuffers::numeric_limits::max(), 2147483647ULL); TEST_EQ(flatbuffers::numeric_limits::min() + 1LL, -9223372036854775807LL); TEST_EQ(flatbuffers::numeric_limits::max(), 9223372036854775807ULL); TEST_EQ(flatbuffers::numeric_limits::max(), 255); TEST_EQ(flatbuffers::numeric_limits::max(), 65535); TEST_EQ(flatbuffers::numeric_limits::max(), 4294967295ULL); TEST_EQ(flatbuffers::numeric_limits::max(), 18446744073709551615ULL); TEST_EQ(TestValue("{ y:127 }", "byte"), 127); TEST_EQ(TestValue("{ y:-128 }", "byte"), -128); TEST_EQ(TestValue("{ y:255 }", "ubyte"), 255); TEST_EQ(TestValue("{ y:0 }", "ubyte"), 0); TEST_EQ(TestValue("{ y:32767 }", "short"), 32767); TEST_EQ(TestValue("{ y:-32768 }", "short"), -32768); TEST_EQ(TestValue("{ y:65535 }", "ushort"), 65535); TEST_EQ(TestValue("{ y:0 }", "ushort"), 0); TEST_EQ(TestValue("{ y:2147483647 }", "int"), 2147483647); TEST_EQ(TestValue("{ y:-2147483648 }", "int") + 1, -2147483647); TEST_EQ(TestValue("{ y:4294967295 }", "uint"), 4294967295); TEST_EQ(TestValue("{ y:0 }", "uint"), 0); TEST_EQ(TestValue("{ y:9223372036854775807 }", "long"), 9223372036854775807LL); TEST_EQ(TestValue("{ y:-9223372036854775808 }", "long") + 1LL, -9223372036854775807LL); TEST_EQ(TestValue("{ y:18446744073709551615 }", "ulong"), 18446744073709551615ULL); TEST_EQ(TestValue("{ y:0 }", "ulong"), 0); TEST_EQ(TestValue("{ y: 18446744073709551615 }", "uint64"), 18446744073709551615ULL); // check that the default works TEST_EQ(TestValue(nullptr, "uint64 = 18446744073709551615"), 18446744073709551615ULL); } void ValidFloatTest() { // check rounding to infinity TEST_EQ(TestValue("{ y:+3.4029e+38 }", "float"), +infinity_f); TEST_EQ(TestValue("{ y:-3.4029e+38 }", "float"), -infinity_f); TEST_EQ(TestValue("{ y:+1.7977e+308 }", "double"), +infinity_d); TEST_EQ(TestValue("{ y:-1.7977e+308 }", "double"), -infinity_d); TEST_EQ( FloatCompare(TestValue("{ y:0.0314159e+2 }", "float"), 3.14159f), true); // float in string TEST_EQ(FloatCompare(TestValue("{ y:\" 0.0314159e+2 \" }", "float"), 3.14159f), true); TEST_EQ(TestValue("{ y:1 }", "float"), 1.0f); TEST_EQ(TestValue("{ y:1.0 }", "float"), 1.0f); TEST_EQ(TestValue("{ y:1. }", "float"), 1.0f); TEST_EQ(TestValue("{ y:+1. }", "float"), 1.0f); TEST_EQ(TestValue("{ y:-1. }", "float"), -1.0f); TEST_EQ(TestValue("{ y:1.e0 }", "float"), 1.0f); TEST_EQ(TestValue("{ y:1.e+0 }", "float"), 1.0f); TEST_EQ(TestValue("{ y:1.e-0 }", "float"), 1.0f); TEST_EQ(TestValue("{ y:0.125 }", "float"), 0.125f); TEST_EQ(TestValue("{ y:.125 }", "float"), 0.125f); TEST_EQ(TestValue("{ y:-.125 }", "float"), -0.125f); TEST_EQ(TestValue("{ y:+.125 }", "float"), +0.125f); TEST_EQ(TestValue("{ y:5 }", "float"), 5.0f); TEST_EQ(TestValue("{ y:\"5\" }", "float"), 5.0f); #if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0) // Old MSVC versions may have problem with this check. // https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/ TEST_EQ(TestValue("{ y:6.9294956446009195e15 }", "double"), 6929495644600920.0); // check nan's TEST_EQ(std::isnan(TestValue("{ y:nan }", "double")), true); TEST_EQ(std::isnan(TestValue("{ y:nan }", "float")), true); TEST_EQ(std::isnan(TestValue("{ y:\"nan\" }", "float")), true); TEST_EQ(std::isnan(TestValue("{ y:\"+nan\" }", "float")), true); TEST_EQ(std::isnan(TestValue("{ y:\"-nan\" }", "float")), true); TEST_EQ(std::isnan(TestValue("{ y:+nan }", "float")), true); TEST_EQ(std::isnan(TestValue("{ y:-nan }", "float")), true); TEST_EQ(std::isnan(TestValue(nullptr, "float=nan")), true); TEST_EQ(std::isnan(TestValue(nullptr, "float=-nan")), true); // check inf TEST_EQ(TestValue("{ y:inf }", "float"), infinity_f); TEST_EQ(TestValue("{ y:\"inf\" }", "float"), infinity_f); TEST_EQ(TestValue("{ y:\"-inf\" }", "float"), -infinity_f); TEST_EQ(TestValue("{ y:\"+inf\" }", "float"), infinity_f); TEST_EQ(TestValue("{ y:+inf }", "float"), infinity_f); TEST_EQ(TestValue("{ y:-inf }", "float"), -infinity_f); TEST_EQ(TestValue(nullptr, "float=inf"), infinity_f); TEST_EQ(TestValue(nullptr, "float=-inf"), -infinity_f); TestValue( "{ y: [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, " "3.0e2] }", "[double]"); TestValue( "{ y: [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, " "3.0e2] }", "[float]"); // Test binary format of float point. // https://en.cppreference.com/w/cpp/language/floating_literal // 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 = TEST_EQ(TestValue("{ y:0x12.34p-1 }", "double"), 9.1015625); // hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0 TEST_EQ(TestValue("{ y:-0x0.2p0 }", "float"), -0.125f); TEST_EQ(TestValue("{ y:-0x.2p1 }", "float"), -0.25f); TEST_EQ(TestValue("{ y:0x1.2p3 }", "float"), 9.0f); TEST_EQ(TestValue("{ y:0x10.1p0 }", "float"), 16.0625f); TEST_EQ(TestValue("{ y:0x1.2p3 }", "double"), 9.0); TEST_EQ(TestValue("{ y:0x10.1p0 }", "double"), 16.0625); TEST_EQ(TestValue("{ y:0xC.68p+2 }", "double"), 49.625); TestValue("{ y: [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]"); TestValue("{ y: [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]"); #else // FLATBUFFERS_HAS_NEW_STRTOD TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped"); #endif // !FLATBUFFERS_HAS_NEW_STRTOD } void UnicodeTest() { flatbuffers::Parser parser; // Without setting allow_non_utf8 = true, we treat \x sequences as byte // sequences which are then validated as UTF-8. TEST_EQ(parser.Parse("table T { F:string; }" "root_type T;" "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" "\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8" "3D\\uDE0E\" }"), true); std::string jsongen; parser.opts.indent_step = -1; auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen); TEST_NULL(result); TEST_EQ_STR(jsongen.c_str(), "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" "\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}"); } void UnicodeTestAllowNonUTF8() { flatbuffers::Parser parser; parser.opts.allow_non_utf8 = true; TEST_EQ( parser.Parse( "table T { F:string; }" "root_type T;" "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"), true); std::string jsongen; parser.opts.indent_step = -1; auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen); TEST_NULL(result); TEST_EQ_STR( jsongen.c_str(), "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" "\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}"); } void UnicodeTestGenerateTextFailsOnNonUTF8() { flatbuffers::Parser parser; // Allow non-UTF-8 initially to model what happens when we load a binary // flatbuffer from disk which contains non-UTF-8 strings. parser.opts.allow_non_utf8 = true; TEST_EQ( parser.Parse( "table T { F:string; }" "root_type T;" "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"), true); std::string jsongen; parser.opts.indent_step = -1; // Now, disallow non-UTF-8 (the default behavior) so GenText indicates // failure. parser.opts.allow_non_utf8 = false; auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen); TEST_EQ_STR(result, "string contains non-utf8 bytes"); } void UnicodeSurrogatesTest() { flatbuffers::Parser parser; TEST_EQ(parser.Parse("table T { F:string (id: 0); }" "root_type T;" "{ F:\"\\uD83D\\uDCA9\"}"), true); auto root = flatbuffers::GetRoot( parser.builder_.GetBufferPointer()); auto string = root->GetPointer( flatbuffers::FieldIndexToOffset(0)); TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9"); } void UnknownFieldsTest() { flatbuffers::IDLOptions opts; opts.skip_unexpected_fields_in_json = true; flatbuffers::Parser parser(opts); TEST_EQ(parser.Parse("table T { str:string; i:int;}" "root_type T;" "{ str:\"test\"," "unknown_string:\"test\"," "\"unknown_string\":\"test\"," "unknown_int:10," "unknown_float:1.0," "unknown_array: [ 1, 2, 3, 4]," "unknown_object: { i: 10 }," "\"unknown_object\": { \"i\": 10 }," "i:10}"), true); std::string jsongen; parser.opts.indent_step = -1; auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen); TEST_NULL(result); TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}"); } void ParseUnionTest() { // Unions must be parseable with the type field following the object. flatbuffers::Parser parser; TEST_EQ(parser.Parse("table T { A:int; }" "union U { T }" "table V { X:U; }" "root_type V;" "{ X:{ A:1 }, X_type: T }"), true); // Unions must be parsable with prefixed namespace. flatbuffers::Parser parser2; TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }" "table B { e:U; } root_type B;" "{ e_type: N_A, e: {} }"), true); // Test union underlying type const char *source = "table A {} table B {} union U : int {A, B} table C {test_union: U; test_vector_of_union: [U];}"; flatbuffers::Parser parser3; parser3.opts.lang_to_generate = flatbuffers::IDLOptions::kCpp | flatbuffers::IDLOptions::kTs; TEST_EQ(parser3.Parse(source), true); parser3.opts.lang_to_generate &= flatbuffers::IDLOptions::kJava; TEST_EQ(parser3.Parse(source), false); } void ValidSameNameDifferentNamespaceTest() { // Duplicate table names in different namespaces must be parsable TEST_ASSERT(flatbuffers::Parser().Parse( "namespace A; table X {} namespace B; table X {}")); // Duplicate union names in different namespaces must be parsable TEST_ASSERT(flatbuffers::Parser().Parse( "namespace A; union X {} namespace B; union X {}")); // Clashing table and union names in different namespaces must be parsable TEST_ASSERT(flatbuffers::Parser().Parse( "namespace A; table X {} namespace B; union X {}")); TEST_ASSERT(flatbuffers::Parser().Parse( "namespace A; union X {} namespace B; table X {}")); } void WarningsAsErrorsTest() { { flatbuffers::IDLOptions opts; // opts.warnings_as_errors should default to false flatbuffers::Parser parser(opts); TEST_EQ(parser.Parse("table T { THIS_NAME_CAUSES_A_WARNING:string;}\n" "root_type T;"), true); } { flatbuffers::IDLOptions opts; opts.warnings_as_errors = true; flatbuffers::Parser parser(opts); TEST_EQ(parser.Parse("table T { THIS_NAME_CAUSES_A_WARNING:string;}\n" "root_type T;"), false); } } void StringVectorDefaultsTest() { std::vector schemas; schemas.push_back("table Monster { mana: string = \"\"; }"); schemas.push_back("table Monster { mana: string = \"mystr\"; }"); schemas.push_back("table Monster { mana: string = \" \"; }"); schemas.push_back("table Monster { mana: string = \"null\"; }"); schemas.push_back("table Monster { mana: [int] = []; }"); schemas.push_back("table Monster { mana: [uint] = [ ]; }"); schemas.push_back("table Monster { mana: [byte] = [\t\t\n]; }"); schemas.push_back("enum E:int{}table Monster{mana:[E]=[];}"); for (auto s = schemas.begin(); s < schemas.end(); s++) { flatbuffers::Parser parser; TEST_ASSERT(parser.Parse(s->c_str())); const auto *mana = parser.structs_.Lookup("Monster")->fields.Lookup("mana"); TEST_EQ(mana->IsDefault(), true); } } void FieldIdentifierTest() { using flatbuffers::Parser; TEST_EQ(true, Parser().Parse("table T{ f: int (id:0); }")); // non-integer `id` should be rejected TEST_EQ(false, Parser().Parse("table T{ f: int (id:text); }")); TEST_EQ(false, Parser().Parse("table T{ f: int (id:\"text\"); }")); TEST_EQ(false, Parser().Parse("table T{ f: int (id:0text); }")); TEST_EQ(false, Parser().Parse("table T{ f: int (id:1.0); }")); TEST_EQ(false, Parser().Parse("table T{ f: int (id:-1); g: int (id:0); }")); TEST_EQ(false, Parser().Parse("table T{ f: int (id:129496726); }")); // A unuion filed occupys two ids: enumerator + pointer (offset). TEST_EQ(false, Parser().Parse("union X{} table T{ u: X(id:0); table F{x:int;\n}")); // Positive tests for unions TEST_EQ(true, Parser().Parse("union X{} table T{ u: X (id:1); }")); TEST_EQ(true, Parser().Parse("union X{} table T{ u: X; }")); // Test using 'inf' and 'nan' words both as identifiers and as default values. TEST_EQ(true, Parser().Parse("table T{ nan: string; }")); TEST_EQ(true, Parser().Parse("table T{ inf: string; }")); #if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0) TEST_EQ(true, Parser().Parse("table T{ inf: float = inf; }")); TEST_EQ(true, Parser().Parse("table T{ nan: float = inf; }")); #endif } } // namespace tests } // namespace flatbuffers