#include "blake3_impl.h" #include #define _mm_shuffle_ps2(a, b, c) \ (_mm_castps_si128( \ _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c)))) INLINE __m128i loadu_128(const uint8_t src[16]) { return _mm_loadu_si128((const __m128i *)src); } INLINE __m256i loadu_256(const uint8_t src[32]) { return _mm256_loadu_si256((const __m256i *)src); } INLINE __m512i loadu_512(const uint8_t src[64]) { return _mm512_loadu_si512((const __m512i *)src); } INLINE void storeu_128(__m128i src, uint8_t dest[16]) { _mm_storeu_si128((__m128i *)dest, src); } INLINE void storeu_256(__m256i src, uint8_t dest[16]) { _mm256_storeu_si256((__m256i *)dest, src); } INLINE __m128i add_128(__m128i a, __m128i b) { return _mm_add_epi32(a, b); } INLINE __m256i add_256(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); } INLINE __m512i add_512(__m512i a, __m512i b) { return _mm512_add_epi32(a, b); } INLINE __m128i xor_128(__m128i a, __m128i b) { return _mm_xor_si128(a, b); } INLINE __m256i xor_256(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); } INLINE __m512i xor_512(__m512i a, __m512i b) { return _mm512_xor_si512(a, b); } INLINE __m128i set1_128(uint32_t x) { return _mm_set1_epi32((int32_t)x); } INLINE __m256i set1_256(uint32_t x) { return _mm256_set1_epi32((int32_t)x); } INLINE __m512i set1_512(uint32_t x) { return _mm512_set1_epi32((int32_t)x); } INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d); } INLINE __m128i rot16_128(__m128i x) { return _mm_ror_epi32(x, 16); } INLINE __m256i rot16_256(__m256i x) { return _mm256_ror_epi32(x, 16); } INLINE __m512i rot16_512(__m512i x) { return _mm512_ror_epi32(x, 16); } INLINE __m128i rot12_128(__m128i x) { return _mm_ror_epi32(x, 12); } INLINE __m256i rot12_256(__m256i x) { return _mm256_ror_epi32(x, 12); } INLINE __m512i rot12_512(__m512i x) { return _mm512_ror_epi32(x, 12); } INLINE __m128i rot8_128(__m128i x) { return _mm_ror_epi32(x, 8); } INLINE __m256i rot8_256(__m256i x) { return _mm256_ror_epi32(x, 8); } INLINE __m512i rot8_512(__m512i x) { return _mm512_ror_epi32(x, 8); } INLINE __m128i rot7_128(__m128i x) { return _mm_ror_epi32(x, 7); } INLINE __m256i rot7_256(__m256i x) { return _mm256_ror_epi32(x, 7); } INLINE __m512i rot7_512(__m512i x) { return _mm512_ror_epi32(x, 7); } /* * ---------------------------------------------------------------------------- * compress_avx512 * ---------------------------------------------------------------------------- */ INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, __m128i m) { *row0 = add_128(add_128(*row0, m), *row1); *row3 = xor_128(*row3, *row0); *row3 = rot16_128(*row3); *row2 = add_128(*row2, *row3); *row1 = xor_128(*row1, *row2); *row1 = rot12_128(*row1); } INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, __m128i m) { *row0 = add_128(add_128(*row0, m), *row1); *row3 = xor_128(*row3, *row0); *row3 = rot8_128(*row3); *row2 = add_128(*row2, *row3); *row1 = xor_128(*row1, *row2); *row1 = rot7_128(*row1); } // Note the optimization here of leaving row1 as the unrotated row, rather than // row0. All the message loads below are adjusted to compensate for this. See // discussion at https://github.com/sneves/blake2-avx2/pull/4 INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3)); *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1)); } INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1)); *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3)); } INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags) { rows[0] = loadu_128((uint8_t *)&cv[0]); rows[1] = loadu_128((uint8_t *)&cv[4]); rows[2] = set4(IV[0], IV[1], IV[2], IV[3]); rows[3] = set4(counter_low(counter), counter_high(counter), (uint32_t)block_len, (uint32_t)flags); __m128i m0 = loadu_128(&block[sizeof(__m128i) * 0]); __m128i m1 = loadu_128(&block[sizeof(__m128i) * 1]); __m128i m2 = loadu_128(&block[sizeof(__m128i) * 2]); __m128i m3 = loadu_128(&block[sizeof(__m128i) * 3]); __m128i t0, t1, t2, t3, tt; // Round 1. The first round permutes the message words from the original // input order, into the groups that get mixed in parallel. t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); diagonalize(&rows[0], &rows[2], &rows[3]); t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8 t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9 t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); undiagonalize(&rows[0], &rows[2], &rows[3]); m0 = t0; m1 = t1; m2 = t2; m3 = t3; // Round 2. This round and all following rounds apply a fixed permutation // to the message words from the round before. t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); t1 = _mm_blend_epi16(tt, t1, 0xCC); g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); diagonalize(&rows[0], &rows[2], &rows[3]); t2 = _mm_unpacklo_epi64(m3, m1); tt = _mm_blend_epi16(t2, m2, 0xC0); t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); t3 = _mm_unpackhi_epi32(m1, m3); tt = _mm_unpacklo_epi32(m2, t3); t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); undiagonalize(&rows[0], &rows[2], &rows[3]); m0 = t0; m1 = t1; m2 = t2; m3 = t3; // Round 3 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); t1 = _mm_blend_epi16(tt, t1, 0xCC); g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); diagonalize(&rows[0], &rows[2], &rows[3]); t2 = _mm_unpacklo_epi64(m3, m1); tt = _mm_blend_epi16(t2, m2, 0xC0); t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); t3 = _mm_unpackhi_epi32(m1, m3); tt = _mm_unpacklo_epi32(m2, t3); t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); undiagonalize(&rows[0], &rows[2], &rows[3]); m0 = t0; m1 = t1; m2 = t2; m3 = t3; // Round 4 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); t1 = _mm_blend_epi16(tt, t1, 0xCC); g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); diagonalize(&rows[0], &rows[2], &rows[3]); t2 = _mm_unpacklo_epi64(m3, m1); tt = _mm_blend_epi16(t2, m2, 0xC0); t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); t3 = _mm_unpackhi_epi32(m1, m3); tt = _mm_unpacklo_epi32(m2, t3); t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); undiagonalize(&rows[0], &rows[2], &rows[3]); m0 = t0; m1 = t1; m2 = t2; m3 = t3; // Round 5 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); t1 = _mm_blend_epi16(tt, t1, 0xCC); g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); diagonalize(&rows[0], &rows[2], &rows[3]); t2 = _mm_unpacklo_epi64(m3, m1); tt = _mm_blend_epi16(t2, m2, 0xC0); t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); t3 = _mm_unpackhi_epi32(m1, m3); tt = _mm_unpacklo_epi32(m2, t3); t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); undiagonalize(&rows[0], &rows[2], &rows[3]); m0 = t0; m1 = t1; m2 = t2; m3 = t3; // Round 6 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); t1 = _mm_blend_epi16(tt, t1, 0xCC); g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); diagonalize(&rows[0], &rows[2], &rows[3]); t2 = _mm_unpacklo_epi64(m3, m1); tt = _mm_blend_epi16(t2, m2, 0xC0); t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); t3 = _mm_unpackhi_epi32(m1, m3); tt = _mm_unpacklo_epi32(m2, t3); t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); undiagonalize(&rows[0], &rows[2], &rows[3]); m0 = t0; m1 = t1; m2 = t2; m3 = t3; // Round 7 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); t1 = _mm_blend_epi16(tt, t1, 0xCC); g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); diagonalize(&rows[0], &rows[2], &rows[3]); t2 = _mm_unpacklo_epi64(m3, m1); tt = _mm_blend_epi16(t2, m2, 0xC0); t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); t3 = _mm_unpackhi_epi32(m1, m3); tt = _mm_unpacklo_epi32(m2, t3); t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); undiagonalize(&rows[0], &rows[2], &rows[3]); } void blake3_compress_xof_avx512(const uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags, uint8_t out[64]) { __m128i rows[4]; compress_pre(rows, cv, block, block_len, counter, flags); storeu_128(xor_128(rows[0], rows[2]), &out[0]); storeu_128(xor_128(rows[1], rows[3]), &out[16]); storeu_128(xor_128(rows[2], loadu_128((uint8_t *)&cv[0])), &out[32]); storeu_128(xor_128(rows[3], loadu_128((uint8_t *)&cv[4])), &out[48]); } void blake3_compress_in_place_avx512(uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags) { __m128i rows[4]; compress_pre(rows, cv, block, block_len, counter, flags); storeu_128(xor_128(rows[0], rows[2]), (uint8_t *)&cv[0]); storeu_128(xor_128(rows[1], rows[3]), (uint8_t *)&cv[4]); } /* * ---------------------------------------------------------------------------- * hash4_avx512 * ---------------------------------------------------------------------------- */ INLINE void round_fn4(__m128i v[16], __m128i m[16], size_t r) { v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); v[0] = add_128(v[0], v[4]); v[1] = add_128(v[1], v[5]); v[2] = add_128(v[2], v[6]); v[3] = add_128(v[3], v[7]); v[12] = xor_128(v[12], v[0]); v[13] = xor_128(v[13], v[1]); v[14] = xor_128(v[14], v[2]); v[15] = xor_128(v[15], v[3]); v[12] = rot16_128(v[12]); v[13] = rot16_128(v[13]); v[14] = rot16_128(v[14]); v[15] = rot16_128(v[15]); v[8] = add_128(v[8], v[12]); v[9] = add_128(v[9], v[13]); v[10] = add_128(v[10], v[14]); v[11] = add_128(v[11], v[15]); v[4] = xor_128(v[4], v[8]); v[5] = xor_128(v[5], v[9]); v[6] = xor_128(v[6], v[10]); v[7] = xor_128(v[7], v[11]); v[4] = rot12_128(v[4]); v[5] = rot12_128(v[5]); v[6] = rot12_128(v[6]); v[7] = rot12_128(v[7]); v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); v[0] = add_128(v[0], v[4]); v[1] = add_128(v[1], v[5]); v[2] = add_128(v[2], v[6]); v[3] = add_128(v[3], v[7]); v[12] = xor_128(v[12], v[0]); v[13] = xor_128(v[13], v[1]); v[14] = xor_128(v[14], v[2]); v[15] = xor_128(v[15], v[3]); v[12] = rot8_128(v[12]); v[13] = rot8_128(v[13]); v[14] = rot8_128(v[14]); v[15] = rot8_128(v[15]); v[8] = add_128(v[8], v[12]); v[9] = add_128(v[9], v[13]); v[10] = add_128(v[10], v[14]); v[11] = add_128(v[11], v[15]); v[4] = xor_128(v[4], v[8]); v[5] = xor_128(v[5], v[9]); v[6] = xor_128(v[6], v[10]); v[7] = xor_128(v[7], v[11]); v[4] = rot7_128(v[4]); v[5] = rot7_128(v[5]); v[6] = rot7_128(v[6]); v[7] = rot7_128(v[7]); v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); v[0] = add_128(v[0], v[5]); v[1] = add_128(v[1], v[6]); v[2] = add_128(v[2], v[7]); v[3] = add_128(v[3], v[4]); v[15] = xor_128(v[15], v[0]); v[12] = xor_128(v[12], v[1]); v[13] = xor_128(v[13], v[2]); v[14] = xor_128(v[14], v[3]); v[15] = rot16_128(v[15]); v[12] = rot16_128(v[12]); v[13] = rot16_128(v[13]); v[14] = rot16_128(v[14]); v[10] = add_128(v[10], v[15]); v[11] = add_128(v[11], v[12]); v[8] = add_128(v[8], v[13]); v[9] = add_128(v[9], v[14]); v[5] = xor_128(v[5], v[10]); v[6] = xor_128(v[6], v[11]); v[7] = xor_128(v[7], v[8]); v[4] = xor_128(v[4], v[9]); v[5] = rot12_128(v[5]); v[6] = rot12_128(v[6]); v[7] = rot12_128(v[7]); v[4] = rot12_128(v[4]); v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); v[0] = add_128(v[0], v[5]); v[1] = add_128(v[1], v[6]); v[2] = add_128(v[2], v[7]); v[3] = add_128(v[3], v[4]); v[15] = xor_128(v[15], v[0]); v[12] = xor_128(v[12], v[1]); v[13] = xor_128(v[13], v[2]); v[14] = xor_128(v[14], v[3]); v[15] = rot8_128(v[15]); v[12] = rot8_128(v[12]); v[13] = rot8_128(v[13]); v[14] = rot8_128(v[14]); v[10] = add_128(v[10], v[15]); v[11] = add_128(v[11], v[12]); v[8] = add_128(v[8], v[13]); v[9] = add_128(v[9], v[14]); v[5] = xor_128(v[5], v[10]); v[6] = xor_128(v[6], v[11]); v[7] = xor_128(v[7], v[8]); v[4] = xor_128(v[4], v[9]); v[5] = rot7_128(v[5]); v[6] = rot7_128(v[6]); v[7] = rot7_128(v[7]); v[4] = rot7_128(v[4]); } INLINE void transpose_vecs_128(__m128i vecs[4]) { // Interleave 32-bit lanes. The low unpack is lanes 00/11 and the high is // 22/33. Note that this doesn't split the vector into two lanes, as the // AVX2 counterparts do. __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]); __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]); __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]); __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]); // Interleave 64-bit lanes. __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01); __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01); __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23); __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23); vecs[0] = abcd_0; vecs[1] = abcd_1; vecs[2] = abcd_2; vecs[3] = abcd_3; } INLINE void transpose_msg_vecs4(const uint8_t *const *inputs, size_t block_offset, __m128i out[16]) { out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(__m128i)]); out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(__m128i)]); out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(__m128i)]); out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(__m128i)]); out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(__m128i)]); out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(__m128i)]); out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(__m128i)]); out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(__m128i)]); out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(__m128i)]); out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(__m128i)]); out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(__m128i)]); out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(__m128i)]); out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(__m128i)]); out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(__m128i)]); out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(__m128i)]); out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(__m128i)]); for (size_t i = 0; i < 4; ++i) { _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); } transpose_vecs_128(&out[0]); transpose_vecs_128(&out[4]); transpose_vecs_128(&out[8]); transpose_vecs_128(&out[12]); } INLINE void load_counters4(uint64_t counter, bool increment_counter, __m128i *out_lo, __m128i *out_hi) { uint64_t mask = (increment_counter ? ~0 : 0); __m256i mask_vec = _mm256_set1_epi64x(mask); __m256i deltas = _mm256_setr_epi64x(0, 1, 2, 3); deltas = _mm256_and_si256(mask_vec, deltas); __m256i counters = _mm256_add_epi64(_mm256_set1_epi64x((int64_t)counter), deltas); *out_lo = _mm256_cvtepi64_epi32(counters); *out_hi = _mm256_cvtepi64_epi32(_mm256_srli_epi64(counters, 32)); } static void blake3_hash4_avx512(const uint8_t *const *inputs, size_t blocks, const uint32_t key[8], uint64_t counter, bool increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out) { __m128i h_vecs[8] = { set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]), set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]), }; __m128i counter_low_vec, counter_high_vec; load_counters4(counter, increment_counter, &counter_low_vec, &counter_high_vec); uint8_t block_flags = flags | flags_start; for (size_t block = 0; block < blocks; block++) { if (block + 1 == blocks) { block_flags |= flags_end; } __m128i block_len_vec = set1_128(BLAKE3_BLOCK_LEN); __m128i block_flags_vec = set1_128(block_flags); __m128i msg_vecs[16]; transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); __m128i v[16] = { h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]), counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, }; round_fn4(v, msg_vecs, 0); round_fn4(v, msg_vecs, 1); round_fn4(v, msg_vecs, 2); round_fn4(v, msg_vecs, 3); round_fn4(v, msg_vecs, 4); round_fn4(v, msg_vecs, 5); round_fn4(v, msg_vecs, 6); h_vecs[0] = xor_128(v[0], v[8]); h_vecs[1] = xor_128(v[1], v[9]); h_vecs[2] = xor_128(v[2], v[10]); h_vecs[3] = xor_128(v[3], v[11]); h_vecs[4] = xor_128(v[4], v[12]); h_vecs[5] = xor_128(v[5], v[13]); h_vecs[6] = xor_128(v[6], v[14]); h_vecs[7] = xor_128(v[7], v[15]); block_flags = flags; } transpose_vecs_128(&h_vecs[0]); transpose_vecs_128(&h_vecs[4]); // The first four vecs now contain the first half of each output, and the // second four vecs contain the second half of each output. storeu_128(h_vecs[0], &out[0 * sizeof(__m128i)]); storeu_128(h_vecs[4], &out[1 * sizeof(__m128i)]); storeu_128(h_vecs[1], &out[2 * sizeof(__m128i)]); storeu_128(h_vecs[5], &out[3 * sizeof(__m128i)]); storeu_128(h_vecs[2], &out[4 * sizeof(__m128i)]); storeu_128(h_vecs[6], &out[5 * sizeof(__m128i)]); storeu_128(h_vecs[3], &out[6 * sizeof(__m128i)]); storeu_128(h_vecs[7], &out[7 * sizeof(__m128i)]); } /* * ---------------------------------------------------------------------------- * hash8_avx512 * ---------------------------------------------------------------------------- */ INLINE void round_fn8(__m256i v[16], __m256i m[16], size_t r) { v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); v[0] = add_256(v[0], v[4]); v[1] = add_256(v[1], v[5]); v[2] = add_256(v[2], v[6]); v[3] = add_256(v[3], v[7]); v[12] = xor_256(v[12], v[0]); v[13] = xor_256(v[13], v[1]); v[14] = xor_256(v[14], v[2]); v[15] = xor_256(v[15], v[3]); v[12] = rot16_256(v[12]); v[13] = rot16_256(v[13]); v[14] = rot16_256(v[14]); v[15] = rot16_256(v[15]); v[8] = add_256(v[8], v[12]); v[9] = add_256(v[9], v[13]); v[10] = add_256(v[10], v[14]); v[11] = add_256(v[11], v[15]); v[4] = xor_256(v[4], v[8]); v[5] = xor_256(v[5], v[9]); v[6] = xor_256(v[6], v[10]); v[7] = xor_256(v[7], v[11]); v[4] = rot12_256(v[4]); v[5] = rot12_256(v[5]); v[6] = rot12_256(v[6]); v[7] = rot12_256(v[7]); v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); v[0] = add_256(v[0], v[4]); v[1] = add_256(v[1], v[5]); v[2] = add_256(v[2], v[6]); v[3] = add_256(v[3], v[7]); v[12] = xor_256(v[12], v[0]); v[13] = xor_256(v[13], v[1]); v[14] = xor_256(v[14], v[2]); v[15] = xor_256(v[15], v[3]); v[12] = rot8_256(v[12]); v[13] = rot8_256(v[13]); v[14] = rot8_256(v[14]); v[15] = rot8_256(v[15]); v[8] = add_256(v[8], v[12]); v[9] = add_256(v[9], v[13]); v[10] = add_256(v[10], v[14]); v[11] = add_256(v[11], v[15]); v[4] = xor_256(v[4], v[8]); v[5] = xor_256(v[5], v[9]); v[6] = xor_256(v[6], v[10]); v[7] = xor_256(v[7], v[11]); v[4] = rot7_256(v[4]); v[5] = rot7_256(v[5]); v[6] = rot7_256(v[6]); v[7] = rot7_256(v[7]); v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); v[0] = add_256(v[0], v[5]); v[1] = add_256(v[1], v[6]); v[2] = add_256(v[2], v[7]); v[3] = add_256(v[3], v[4]); v[15] = xor_256(v[15], v[0]); v[12] = xor_256(v[12], v[1]); v[13] = xor_256(v[13], v[2]); v[14] = xor_256(v[14], v[3]); v[15] = rot16_256(v[15]); v[12] = rot16_256(v[12]); v[13] = rot16_256(v[13]); v[14] = rot16_256(v[14]); v[10] = add_256(v[10], v[15]); v[11] = add_256(v[11], v[12]); v[8] = add_256(v[8], v[13]); v[9] = add_256(v[9], v[14]); v[5] = xor_256(v[5], v[10]); v[6] = xor_256(v[6], v[11]); v[7] = xor_256(v[7], v[8]); v[4] = xor_256(v[4], v[9]); v[5] = rot12_256(v[5]); v[6] = rot12_256(v[6]); v[7] = rot12_256(v[7]); v[4] = rot12_256(v[4]); v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); v[0] = add_256(v[0], v[5]); v[1] = add_256(v[1], v[6]); v[2] = add_256(v[2], v[7]); v[3] = add_256(v[3], v[4]); v[15] = xor_256(v[15], v[0]); v[12] = xor_256(v[12], v[1]); v[13] = xor_256(v[13], v[2]); v[14] = xor_256(v[14], v[3]); v[15] = rot8_256(v[15]); v[12] = rot8_256(v[12]); v[13] = rot8_256(v[13]); v[14] = rot8_256(v[14]); v[10] = add_256(v[10], v[15]); v[11] = add_256(v[11], v[12]); v[8] = add_256(v[8], v[13]); v[9] = add_256(v[9], v[14]); v[5] = xor_256(v[5], v[10]); v[6] = xor_256(v[6], v[11]); v[7] = xor_256(v[7], v[8]); v[4] = xor_256(v[4], v[9]); v[5] = rot7_256(v[5]); v[6] = rot7_256(v[6]); v[7] = rot7_256(v[7]); v[4] = rot7_256(v[4]); } INLINE void transpose_vecs_256(__m256i vecs[8]) { // Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high // is 22/33/66/77. __m256i ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]); __m256i ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]); __m256i cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]); __m256i cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]); __m256i ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]); __m256i ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]); __m256i gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]); __m256i gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]); // Interleave 64-bit lanes. The low unpack is lanes 00/22 and the high is // 11/33. __m256i abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145); __m256i abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145); __m256i abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367); __m256i abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367); __m256i efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145); __m256i efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145); __m256i efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367); __m256i efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367); // Interleave 128-bit lanes. vecs[0] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x20); vecs[1] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x20); vecs[2] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x20); vecs[3] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x20); vecs[4] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x31); vecs[5] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x31); vecs[6] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x31); vecs[7] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x31); } INLINE void transpose_msg_vecs8(const uint8_t *const *inputs, size_t block_offset, __m256i out[16]) { out[0] = loadu_256(&inputs[0][block_offset + 0 * sizeof(__m256i)]); out[1] = loadu_256(&inputs[1][block_offset + 0 * sizeof(__m256i)]); out[2] = loadu_256(&inputs[2][block_offset + 0 * sizeof(__m256i)]); out[3] = loadu_256(&inputs[3][block_offset + 0 * sizeof(__m256i)]); out[4] = loadu_256(&inputs[4][block_offset + 0 * sizeof(__m256i)]); out[5] = loadu_256(&inputs[5][block_offset + 0 * sizeof(__m256i)]); out[6] = loadu_256(&inputs[6][block_offset + 0 * sizeof(__m256i)]); out[7] = loadu_256(&inputs[7][block_offset + 0 * sizeof(__m256i)]); out[8] = loadu_256(&inputs[0][block_offset + 1 * sizeof(__m256i)]); out[9] = loadu_256(&inputs[1][block_offset + 1 * sizeof(__m256i)]); out[10] = loadu_256(&inputs[2][block_offset + 1 * sizeof(__m256i)]); out[11] = loadu_256(&inputs[3][block_offset + 1 * sizeof(__m256i)]); out[12] = loadu_256(&inputs[4][block_offset + 1 * sizeof(__m256i)]); out[13] = loadu_256(&inputs[5][block_offset + 1 * sizeof(__m256i)]); out[14] = loadu_256(&inputs[6][block_offset + 1 * sizeof(__m256i)]); out[15] = loadu_256(&inputs[7][block_offset + 1 * sizeof(__m256i)]); for (size_t i = 0; i < 8; ++i) { _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); } transpose_vecs_256(&out[0]); transpose_vecs_256(&out[8]); } INLINE void load_counters8(uint64_t counter, bool increment_counter, __m256i *out_lo, __m256i *out_hi) { uint64_t mask = (increment_counter ? ~0 : 0); __m512i mask_vec = _mm512_set1_epi64(mask); __m512i deltas = _mm512_setr_epi64(0, 1, 2, 3, 4, 5, 6, 7); deltas = _mm512_and_si512(mask_vec, deltas); __m512i counters = _mm512_add_epi64(_mm512_set1_epi64((int64_t)counter), deltas); *out_lo = _mm512_cvtepi64_epi32(counters); *out_hi = _mm512_cvtepi64_epi32(_mm512_srli_epi64(counters, 32)); } static void blake3_hash8_avx512(const uint8_t *const *inputs, size_t blocks, const uint32_t key[8], uint64_t counter, bool increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out) { __m256i h_vecs[8] = { set1_256(key[0]), set1_256(key[1]), set1_256(key[2]), set1_256(key[3]), set1_256(key[4]), set1_256(key[5]), set1_256(key[6]), set1_256(key[7]), }; __m256i counter_low_vec, counter_high_vec; load_counters8(counter, increment_counter, &counter_low_vec, &counter_high_vec); uint8_t block_flags = flags | flags_start; for (size_t block = 0; block < blocks; block++) { if (block + 1 == blocks) { block_flags |= flags_end; } __m256i block_len_vec = set1_256(BLAKE3_BLOCK_LEN); __m256i block_flags_vec = set1_256(block_flags); __m256i msg_vecs[16]; transpose_msg_vecs8(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); __m256i v[16] = { h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], set1_256(IV[0]), set1_256(IV[1]), set1_256(IV[2]), set1_256(IV[3]), counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, }; round_fn8(v, msg_vecs, 0); round_fn8(v, msg_vecs, 1); round_fn8(v, msg_vecs, 2); round_fn8(v, msg_vecs, 3); round_fn8(v, msg_vecs, 4); round_fn8(v, msg_vecs, 5); round_fn8(v, msg_vecs, 6); h_vecs[0] = xor_256(v[0], v[8]); h_vecs[1] = xor_256(v[1], v[9]); h_vecs[2] = xor_256(v[2], v[10]); h_vecs[3] = xor_256(v[3], v[11]); h_vecs[4] = xor_256(v[4], v[12]); h_vecs[5] = xor_256(v[5], v[13]); h_vecs[6] = xor_256(v[6], v[14]); h_vecs[7] = xor_256(v[7], v[15]); block_flags = flags; } transpose_vecs_256(h_vecs); storeu_256(h_vecs[0], &out[0 * sizeof(__m256i)]); storeu_256(h_vecs[1], &out[1 * sizeof(__m256i)]); storeu_256(h_vecs[2], &out[2 * sizeof(__m256i)]); storeu_256(h_vecs[3], &out[3 * sizeof(__m256i)]); storeu_256(h_vecs[4], &out[4 * sizeof(__m256i)]); storeu_256(h_vecs[5], &out[5 * sizeof(__m256i)]); storeu_256(h_vecs[6], &out[6 * sizeof(__m256i)]); storeu_256(h_vecs[7], &out[7 * sizeof(__m256i)]); } /* * ---------------------------------------------------------------------------- * hash16_avx512 * ---------------------------------------------------------------------------- */ INLINE void round_fn16(__m512i v[16], __m512i m[16], size_t r) { v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); v[0] = add_512(v[0], v[4]); v[1] = add_512(v[1], v[5]); v[2] = add_512(v[2], v[6]); v[3] = add_512(v[3], v[7]); v[12] = xor_512(v[12], v[0]); v[13] = xor_512(v[13], v[1]); v[14] = xor_512(v[14], v[2]); v[15] = xor_512(v[15], v[3]); v[12] = rot16_512(v[12]); v[13] = rot16_512(v[13]); v[14] = rot16_512(v[14]); v[15] = rot16_512(v[15]); v[8] = add_512(v[8], v[12]); v[9] = add_512(v[9], v[13]); v[10] = add_512(v[10], v[14]); v[11] = add_512(v[11], v[15]); v[4] = xor_512(v[4], v[8]); v[5] = xor_512(v[5], v[9]); v[6] = xor_512(v[6], v[10]); v[7] = xor_512(v[7], v[11]); v[4] = rot12_512(v[4]); v[5] = rot12_512(v[5]); v[6] = rot12_512(v[6]); v[7] = rot12_512(v[7]); v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); v[0] = add_512(v[0], v[4]); v[1] = add_512(v[1], v[5]); v[2] = add_512(v[2], v[6]); v[3] = add_512(v[3], v[7]); v[12] = xor_512(v[12], v[0]); v[13] = xor_512(v[13], v[1]); v[14] = xor_512(v[14], v[2]); v[15] = xor_512(v[15], v[3]); v[12] = rot8_512(v[12]); v[13] = rot8_512(v[13]); v[14] = rot8_512(v[14]); v[15] = rot8_512(v[15]); v[8] = add_512(v[8], v[12]); v[9] = add_512(v[9], v[13]); v[10] = add_512(v[10], v[14]); v[11] = add_512(v[11], v[15]); v[4] = xor_512(v[4], v[8]); v[5] = xor_512(v[5], v[9]); v[6] = xor_512(v[6], v[10]); v[7] = xor_512(v[7], v[11]); v[4] = rot7_512(v[4]); v[5] = rot7_512(v[5]); v[6] = rot7_512(v[6]); v[7] = rot7_512(v[7]); v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); v[0] = add_512(v[0], v[5]); v[1] = add_512(v[1], v[6]); v[2] = add_512(v[2], v[7]); v[3] = add_512(v[3], v[4]); v[15] = xor_512(v[15], v[0]); v[12] = xor_512(v[12], v[1]); v[13] = xor_512(v[13], v[2]); v[14] = xor_512(v[14], v[3]); v[15] = rot16_512(v[15]); v[12] = rot16_512(v[12]); v[13] = rot16_512(v[13]); v[14] = rot16_512(v[14]); v[10] = add_512(v[10], v[15]); v[11] = add_512(v[11], v[12]); v[8] = add_512(v[8], v[13]); v[9] = add_512(v[9], v[14]); v[5] = xor_512(v[5], v[10]); v[6] = xor_512(v[6], v[11]); v[7] = xor_512(v[7], v[8]); v[4] = xor_512(v[4], v[9]); v[5] = rot12_512(v[5]); v[6] = rot12_512(v[6]); v[7] = rot12_512(v[7]); v[4] = rot12_512(v[4]); v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); v[0] = add_512(v[0], v[5]); v[1] = add_512(v[1], v[6]); v[2] = add_512(v[2], v[7]); v[3] = add_512(v[3], v[4]); v[15] = xor_512(v[15], v[0]); v[12] = xor_512(v[12], v[1]); v[13] = xor_512(v[13], v[2]); v[14] = xor_512(v[14], v[3]); v[15] = rot8_512(v[15]); v[12] = rot8_512(v[12]); v[13] = rot8_512(v[13]); v[14] = rot8_512(v[14]); v[10] = add_512(v[10], v[15]); v[11] = add_512(v[11], v[12]); v[8] = add_512(v[8], v[13]); v[9] = add_512(v[9], v[14]); v[5] = xor_512(v[5], v[10]); v[6] = xor_512(v[6], v[11]); v[7] = xor_512(v[7], v[8]); v[4] = xor_512(v[4], v[9]); v[5] = rot7_512(v[5]); v[6] = rot7_512(v[6]); v[7] = rot7_512(v[7]); v[4] = rot7_512(v[4]); } // 0b10001000, or lanes a0/a2/b0/b2 in little-endian order #define LO_IMM8 0x88 INLINE __m512i unpack_lo_128(__m512i a, __m512i b) { return _mm512_shuffle_i32x4(a, b, LO_IMM8); } // 0b11011101, or lanes a1/a3/b1/b3 in little-endian order #define HI_IMM8 0xdd INLINE __m512i unpack_hi_128(__m512i a, __m512i b) { return _mm512_shuffle_i32x4(a, b, HI_IMM8); } INLINE void transpose_vecs_512(__m512i vecs[16]) { // Interleave 32-bit lanes. The _0 unpack is lanes // 0/0/1/1/4/4/5/5/8/8/9/9/12/12/13/13, and the _2 unpack is lanes // 2/2/3/3/6/6/7/7/10/10/11/11/14/14/15/15. __m512i ab_0 = _mm512_unpacklo_epi32(vecs[0], vecs[1]); __m512i ab_2 = _mm512_unpackhi_epi32(vecs[0], vecs[1]); __m512i cd_0 = _mm512_unpacklo_epi32(vecs[2], vecs[3]); __m512i cd_2 = _mm512_unpackhi_epi32(vecs[2], vecs[3]); __m512i ef_0 = _mm512_unpacklo_epi32(vecs[4], vecs[5]); __m512i ef_2 = _mm512_unpackhi_epi32(vecs[4], vecs[5]); __m512i gh_0 = _mm512_unpacklo_epi32(vecs[6], vecs[7]); __m512i gh_2 = _mm512_unpackhi_epi32(vecs[6], vecs[7]); __m512i ij_0 = _mm512_unpacklo_epi32(vecs[8], vecs[9]); __m512i ij_2 = _mm512_unpackhi_epi32(vecs[8], vecs[9]); __m512i kl_0 = _mm512_unpacklo_epi32(vecs[10], vecs[11]); __m512i kl_2 = _mm512_unpackhi_epi32(vecs[10], vecs[11]); __m512i mn_0 = _mm512_unpacklo_epi32(vecs[12], vecs[13]); __m512i mn_2 = _mm512_unpackhi_epi32(vecs[12], vecs[13]); __m512i op_0 = _mm512_unpacklo_epi32(vecs[14], vecs[15]); __m512i op_2 = _mm512_unpackhi_epi32(vecs[14], vecs[15]); // Interleave 64-bit lanes. The _0 unpack is lanes // 0/0/0/0/4/4/4/4/8/8/8/8/12/12/12/12, the _1 unpack is lanes // 1/1/1/1/5/5/5/5/9/9/9/9/13/13/13/13, the _2 unpack is lanes // 2/2/2/2/6/6/6/6/10/10/10/10/14/14/14/14, and the _3 unpack is lanes // 3/3/3/3/7/7/7/7/11/11/11/11/15/15/15/15. __m512i abcd_0 = _mm512_unpacklo_epi64(ab_0, cd_0); __m512i abcd_1 = _mm512_unpackhi_epi64(ab_0, cd_0); __m512i abcd_2 = _mm512_unpacklo_epi64(ab_2, cd_2); __m512i abcd_3 = _mm512_unpackhi_epi64(ab_2, cd_2); __m512i efgh_0 = _mm512_unpacklo_epi64(ef_0, gh_0); __m512i efgh_1 = _mm512_unpackhi_epi64(ef_0, gh_0); __m512i efgh_2 = _mm512_unpacklo_epi64(ef_2, gh_2); __m512i efgh_3 = _mm512_unpackhi_epi64(ef_2, gh_2); __m512i ijkl_0 = _mm512_unpacklo_epi64(ij_0, kl_0); __m512i ijkl_1 = _mm512_unpackhi_epi64(ij_0, kl_0); __m512i ijkl_2 = _mm512_unpacklo_epi64(ij_2, kl_2); __m512i ijkl_3 = _mm512_unpackhi_epi64(ij_2, kl_2); __m512i mnop_0 = _mm512_unpacklo_epi64(mn_0, op_0); __m512i mnop_1 = _mm512_unpackhi_epi64(mn_0, op_0); __m512i mnop_2 = _mm512_unpacklo_epi64(mn_2, op_2); __m512i mnop_3 = _mm512_unpackhi_epi64(mn_2, op_2); // Interleave 128-bit lanes. The _0 unpack is // 0/0/0/0/8/8/8/8/0/0/0/0/8/8/8/8, the _1 unpack is // 1/1/1/1/9/9/9/9/1/1/1/1/9/9/9/9, and so on. __m512i abcdefgh_0 = unpack_lo_128(abcd_0, efgh_0); __m512i abcdefgh_1 = unpack_lo_128(abcd_1, efgh_1); __m512i abcdefgh_2 = unpack_lo_128(abcd_2, efgh_2); __m512i abcdefgh_3 = unpack_lo_128(abcd_3, efgh_3); __m512i abcdefgh_4 = unpack_hi_128(abcd_0, efgh_0); __m512i abcdefgh_5 = unpack_hi_128(abcd_1, efgh_1); __m512i abcdefgh_6 = unpack_hi_128(abcd_2, efgh_2); __m512i abcdefgh_7 = unpack_hi_128(abcd_3, efgh_3); __m512i ijklmnop_0 = unpack_lo_128(ijkl_0, mnop_0); __m512i ijklmnop_1 = unpack_lo_128(ijkl_1, mnop_1); __m512i ijklmnop_2 = unpack_lo_128(ijkl_2, mnop_2); __m512i ijklmnop_3 = unpack_lo_128(ijkl_3, mnop_3); __m512i ijklmnop_4 = unpack_hi_128(ijkl_0, mnop_0); __m512i ijklmnop_5 = unpack_hi_128(ijkl_1, mnop_1); __m512i ijklmnop_6 = unpack_hi_128(ijkl_2, mnop_2); __m512i ijklmnop_7 = unpack_hi_128(ijkl_3, mnop_3); // Interleave 128-bit lanes again for the final outputs. vecs[0] = unpack_lo_128(abcdefgh_0, ijklmnop_0); vecs[1] = unpack_lo_128(abcdefgh_1, ijklmnop_1); vecs[2] = unpack_lo_128(abcdefgh_2, ijklmnop_2); vecs[3] = unpack_lo_128(abcdefgh_3, ijklmnop_3); vecs[4] = unpack_lo_128(abcdefgh_4, ijklmnop_4); vecs[5] = unpack_lo_128(abcdefgh_5, ijklmnop_5); vecs[6] = unpack_lo_128(abcdefgh_6, ijklmnop_6); vecs[7] = unpack_lo_128(abcdefgh_7, ijklmnop_7); vecs[8] = unpack_hi_128(abcdefgh_0, ijklmnop_0); vecs[9] = unpack_hi_128(abcdefgh_1, ijklmnop_1); vecs[10] = unpack_hi_128(abcdefgh_2, ijklmnop_2); vecs[11] = unpack_hi_128(abcdefgh_3, ijklmnop_3); vecs[12] = unpack_hi_128(abcdefgh_4, ijklmnop_4); vecs[13] = unpack_hi_128(abcdefgh_5, ijklmnop_5); vecs[14] = unpack_hi_128(abcdefgh_6, ijklmnop_6); vecs[15] = unpack_hi_128(abcdefgh_7, ijklmnop_7); } INLINE void transpose_msg_vecs16(const uint8_t *const *inputs, size_t block_offset, __m512i out[16]) { out[0] = loadu_512(&inputs[0][block_offset]); out[1] = loadu_512(&inputs[1][block_offset]); out[2] = loadu_512(&inputs[2][block_offset]); out[3] = loadu_512(&inputs[3][block_offset]); out[4] = loadu_512(&inputs[4][block_offset]); out[5] = loadu_512(&inputs[5][block_offset]); out[6] = loadu_512(&inputs[6][block_offset]); out[7] = loadu_512(&inputs[7][block_offset]); out[8] = loadu_512(&inputs[8][block_offset]); out[9] = loadu_512(&inputs[9][block_offset]); out[10] = loadu_512(&inputs[10][block_offset]); out[11] = loadu_512(&inputs[11][block_offset]); out[12] = loadu_512(&inputs[12][block_offset]); out[13] = loadu_512(&inputs[13][block_offset]); out[14] = loadu_512(&inputs[14][block_offset]); out[15] = loadu_512(&inputs[15][block_offset]); for (size_t i = 0; i < 16; ++i) { _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); } transpose_vecs_512(out); } INLINE void load_counters16(uint64_t counter, bool increment_counter, __m512i *out_lo, __m512i *out_hi) { const __m512i mask = _mm512_set1_epi32(-(int32_t)increment_counter); const __m512i deltas = _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); const __m512i masked_deltas = _mm512_and_si512(deltas, mask); const __m512i low_words = _mm512_add_epi32( _mm512_set1_epi32((int32_t)counter), masked_deltas); // The carry bit is 1 if the high bit of the word was 1 before addition and is // 0 after. // NOTE: It would be a bit more natural to use _mm512_cmp_epu32_mask to // compute the carry bits here, and originally we did, but that intrinsic is // broken under GCC 5.4. See https://github.com/BLAKE3-team/BLAKE3/issues/271. const __m512i carries = _mm512_srli_epi32( _mm512_andnot_si512( low_words, // 0 after (gets inverted by andnot) _mm512_set1_epi32((int32_t)counter)), // and 1 before 31); const __m512i high_words = _mm512_add_epi32( _mm512_set1_epi32((int32_t)(counter >> 32)), carries); *out_lo = low_words; *out_hi = high_words; } static void blake3_hash16_avx512(const uint8_t *const *inputs, size_t blocks, const uint32_t key[8], uint64_t counter, bool increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out) { __m512i h_vecs[8] = { set1_512(key[0]), set1_512(key[1]), set1_512(key[2]), set1_512(key[3]), set1_512(key[4]), set1_512(key[5]), set1_512(key[6]), set1_512(key[7]), }; __m512i counter_low_vec, counter_high_vec; load_counters16(counter, increment_counter, &counter_low_vec, &counter_high_vec); uint8_t block_flags = flags | flags_start; for (size_t block = 0; block < blocks; block++) { if (block + 1 == blocks) { block_flags |= flags_end; } __m512i block_len_vec = set1_512(BLAKE3_BLOCK_LEN); __m512i block_flags_vec = set1_512(block_flags); __m512i msg_vecs[16]; transpose_msg_vecs16(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); __m512i v[16] = { h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], set1_512(IV[0]), set1_512(IV[1]), set1_512(IV[2]), set1_512(IV[3]), counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, }; round_fn16(v, msg_vecs, 0); round_fn16(v, msg_vecs, 1); round_fn16(v, msg_vecs, 2); round_fn16(v, msg_vecs, 3); round_fn16(v, msg_vecs, 4); round_fn16(v, msg_vecs, 5); round_fn16(v, msg_vecs, 6); h_vecs[0] = xor_512(v[0], v[8]); h_vecs[1] = xor_512(v[1], v[9]); h_vecs[2] = xor_512(v[2], v[10]); h_vecs[3] = xor_512(v[3], v[11]); h_vecs[4] = xor_512(v[4], v[12]); h_vecs[5] = xor_512(v[5], v[13]); h_vecs[6] = xor_512(v[6], v[14]); h_vecs[7] = xor_512(v[7], v[15]); block_flags = flags; } // transpose_vecs_512 operates on a 16x16 matrix of words, but we only have 8 // state vectors. Pad the matrix with zeros. After transposition, store the // lower half of each vector. __m512i padded[16] = { h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], set1_512(0), set1_512(0), set1_512(0), set1_512(0), set1_512(0), set1_512(0), set1_512(0), set1_512(0), }; transpose_vecs_512(padded); _mm256_mask_storeu_epi32(&out[0 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[0])); _mm256_mask_storeu_epi32(&out[1 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[1])); _mm256_mask_storeu_epi32(&out[2 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[2])); _mm256_mask_storeu_epi32(&out[3 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[3])); _mm256_mask_storeu_epi32(&out[4 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[4])); _mm256_mask_storeu_epi32(&out[5 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[5])); _mm256_mask_storeu_epi32(&out[6 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[6])); _mm256_mask_storeu_epi32(&out[7 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[7])); _mm256_mask_storeu_epi32(&out[8 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[8])); _mm256_mask_storeu_epi32(&out[9 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[9])); _mm256_mask_storeu_epi32(&out[10 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[10])); _mm256_mask_storeu_epi32(&out[11 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[11])); _mm256_mask_storeu_epi32(&out[12 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[12])); _mm256_mask_storeu_epi32(&out[13 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[13])); _mm256_mask_storeu_epi32(&out[14 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[14])); _mm256_mask_storeu_epi32(&out[15 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[15])); } /* * ---------------------------------------------------------------------------- * hash_many_avx512 * ---------------------------------------------------------------------------- */ INLINE void hash_one_avx512(const uint8_t *input, size_t blocks, const uint32_t key[8], uint64_t counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) { uint32_t cv[8]; memcpy(cv, key, BLAKE3_KEY_LEN); uint8_t block_flags = flags | flags_start; while (blocks > 0) { if (blocks == 1) { block_flags |= flags_end; } blake3_compress_in_place_avx512(cv, input, BLAKE3_BLOCK_LEN, counter, block_flags); input = &input[BLAKE3_BLOCK_LEN]; blocks -= 1; block_flags = flags; } memcpy(out, cv, BLAKE3_OUT_LEN); } void blake3_hash_many_avx512(const uint8_t *const *inputs, size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter, bool increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out) { while (num_inputs >= 16) { blake3_hash16_avx512(inputs, blocks, key, counter, increment_counter, flags, flags_start, flags_end, out); if (increment_counter) { counter += 16; } inputs += 16; num_inputs -= 16; out = &out[16 * BLAKE3_OUT_LEN]; } while (num_inputs >= 8) { blake3_hash8_avx512(inputs, blocks, key, counter, increment_counter, flags, flags_start, flags_end, out); if (increment_counter) { counter += 8; } inputs += 8; num_inputs -= 8; out = &out[8 * BLAKE3_OUT_LEN]; } while (num_inputs >= 4) { blake3_hash4_avx512(inputs, blocks, key, counter, increment_counter, flags, flags_start, flags_end, out); if (increment_counter) { counter += 4; } inputs += 4; num_inputs -= 4; out = &out[4 * BLAKE3_OUT_LEN]; } while (num_inputs > 0) { hash_one_avx512(inputs[0], blocks, key, counter, flags, flags_start, flags_end, out); if (increment_counter) { counter += 1; } inputs += 1; num_inputs -= 1; out = &out[BLAKE3_OUT_LEN]; } }