/* Copyright (C) 2015 Vladimir Glazachev This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include #include #include "flint.h" #include "aprcl.h" int main(void) { int i, j; FLINT_TEST_INIT(state); flint_printf("unity_zp_jacobi_sum...."); fflush(stdout); /* test computation of j(\chi_{p, q}, \chi_{p, q}) */ for (i = 0; i < 10 * flint_test_multiplier(); i++) { ulong ind, q, p, k; fmpz_t n; unity_zp f, g; n_factor_t q_factors; mp_ptr table; n_factor_init(&q_factors); q = n_randprime(state, 2 + n_randint(state, 4), 0); while (q < 3) q = n_randprime(state, 2 + n_randint(state, 4), 0); n_factor(&q_factors, q - 1, 1); ind = n_randint(state, q_factors.num); p = q_factors.p[ind]; k = q_factors.exp[ind]; fmpz_init(n); fmpz_randtest_unsigned(n, state, 200); while (fmpz_equal_ui(n, 0) != 0) fmpz_randtest_unsigned(n, state, 200); table = aprcl_f_table(q); unity_zp_init(f, p, k, n); unity_zp_init(g, p, k, n); for (j = 1; j < q - 1; j++) { unity_zp_coeff_inc(g, j + table[j]); } _unity_zp_reduce_cyclotomic(g); unity_zp_jacobi_sum_pq(f, q, p); if (unity_zp_equal(f, g) == 0) { flint_printf("FAIL\n"); abort(); } fmpz_clear(n); unity_zp_clear(f); unity_zp_clear(g); _nmod_vec_clear(table); } /* test computation of j(\chi_{2, q}^{2^{k - 3}}, \chi_{2, q}^{3 * 2^{k - 3}}))^2 */ for (i = 0; i < 10 * flint_test_multiplier(); i++) { ulong q, p, k; fmpz_t n; unity_zp f, g; n_factor_t q_factors; mp_ptr table; n_factor_init(&q_factors); q = n_randprime(state, 2 + n_randint(state, 4), 0); while (q < 3) q = n_randprime(state, 2 + n_randint(state, 4), 0); n_factor(&q_factors, q - 1, 1); p = 2; k = q_factors.exp[0]; fmpz_init(n); fmpz_randtest_unsigned(n, state, 200); while (fmpz_equal_ui(n, 0) != 0) fmpz_randtest_unsigned(n, state, 200); table = aprcl_f_table(q); unity_zp_init(f, p, k, n); unity_zp_init(g, p, k, n); for (j = 1; j < q - 1; j++) { unity_zp_coeff_inc(g, 2 * j + table[j]); } _unity_zp_reduce_cyclotomic(g); unity_zp_jacobi_sum_2q_one(f, q); if (unity_zp_equal(f, g) == 0) { flint_printf("FAIL\n"); abort(); } fmpz_clear(n); unity_zp_clear(f); unity_zp_clear(g); _nmod_vec_clear(table); } /* test computation of j(\chi_{2, q}, \chi_{2, q}, \chi_{2, q}) */ for (i = 0; i < 10 * flint_test_multiplier(); i++) { ulong a, b, q, p, k; fmpz_t n; unity_zp f, g; n_factor_t q_factors; mp_ptr table; n_factor_init(&q_factors); q = n_randprime(state, 2 + n_randint(state, 6), 0); while (q < 3) q = n_randprime(state, 2 + n_randint(state, 6), 0); n_factor(&q_factors, q - 1, 1); p = 2; k = q_factors.exp[0]; if (k < 3) continue; fmpz_init(n); fmpz_randtest_unsigned(n, state, 200); while (fmpz_equal_ui(n, 0) != 0) fmpz_randtest_unsigned(n, state, 200); table = aprcl_f_table(q); unity_zp_init(f, p, k, n); unity_zp_init(g, p, k, n); b = n_pow(2, k - 3); a = 3 * b; for (j = 1; j < q - 1; j++) { unity_zp_coeff_inc(g, a * j + b * table[j]); } _unity_zp_reduce_cyclotomic(g); unity_zp_jacobi_sum_2q_two(f, q); if (unity_zp_equal(f, g) == 0) { flint_printf("FAIL\n"); abort(); } fmpz_clear(n); unity_zp_clear(f); unity_zp_clear(g); _nmod_vec_clear(table); } FLINT_TEST_CLEANUP(state); flint_printf("PASS\n"); return 0; }