/* Copyright (C) 2011 Fredrik Johansson This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arith.h" const mp_limb_t bell_number_tab[] = { UWORD(1), UWORD(1), UWORD(2), UWORD(5), UWORD(15), UWORD(52), UWORD(203), UWORD(877), UWORD(4140), UWORD(21147), UWORD(115975), UWORD(678570), UWORD(4213597), UWORD(27644437), UWORD(190899322), UWORD(1382958545), #if FLINT64 UWORD(10480142147), UWORD(82864869804), UWORD(682076806159), UWORD(5832742205057), UWORD(51724158235372), UWORD(474869816156751), UWORD(4506715738447323), UWORD(44152005855084346), UWORD(445958869294805289), UWORD(4638590332229999353), #endif }; static const char bell_mod_2[3] = {1, 1, 0}; static const char bell_mod_3[13] = {1, 1, 2, 2, 0, 1, 2, 1, 0, 0, 1, 0, 1}; mp_limb_t arith_bell_number_nmod(ulong n, nmod_t mod) { mp_limb_t s, t, u; mp_ptr facs, pows; slong i, j; if (n < BELL_NUMBER_TAB_SIZE) return n_mod2_preinv(bell_number_tab[n], mod.n, mod.ninv); if (mod.n == 2) return bell_mod_2[n % 3]; if (mod.n == 3) return bell_mod_3[n % 13]; if (mod.n <= n) { mp_ptr bvec = flint_malloc(sizeof(mp_limb_t) * (n + 1)); arith_bell_number_nmod_vec_recursive(bvec, n + 1, mod); s = bvec[n]; flint_free(bvec); return s; } /* Compute inverse factorials */ /* We actually compute (n! / i!) and divide out (n!)^2 at the end */ facs = flint_malloc(sizeof(mp_limb_t) * (n + 1)); facs[n] = 1; for (i = n - 1; i >= 0; i--) facs[i] = n_mulmod2_preinv(facs[i + 1], i + 1, mod.n, mod.ninv); /* Compute powers */ pows = flint_calloc(n + 1, sizeof(mp_limb_t)); pows[0] = n_powmod2_ui_preinv(0, n, mod.n, mod.ninv); pows[1] = n_powmod2_ui_preinv(1, n, mod.n, mod.ninv); for (i = 2; i <= n; i++) { if (pows[i] == 0) pows[i] = n_powmod2_ui_preinv(i, n, mod.n, mod.ninv); for (j = 2; j <= i && i * j <= n; j++) if (pows[i * j] == 0) pows[i * j] = n_mulmod2_preinv(pows[i], pows[j], mod.n, mod.ninv); } for (s = t = i = 0; i <= n; i++) { if (i % 2 == 0) t = n_addmod(t, facs[i], mod.n); else t = n_submod(t, facs[i], mod.n); u = pows[n - i]; u = n_mulmod2_preinv(u, facs[n - i], mod.n, mod.ninv); u = n_mulmod2_preinv(u, t, mod.n, mod.ninv); s = n_addmod(s, u, mod.n); } /* Remove (n!)^2 */ u = n_invmod(facs[0], mod.n); u = n_mulmod2_preinv(u, u, mod.n, mod.ninv); s = n_mulmod2_preinv(s, u, mod.n, mod.ninv); flint_free(facs); flint_free(pows); return s; }