/* Copyright (C) 2011 Fredrik Johansson This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arith.h" #define BERNOULLI_DENOM_MAX_SMALL 178 #if FLINT64 #define __u32 unsigned int #else #define __u32 mp_limb_t #endif static const __u32 __bernoulli_denom_small[] = { UWORD(1), UWORD(6), UWORD(30), UWORD(42), UWORD(30), UWORD(66), UWORD(2730), UWORD(6), UWORD(510), UWORD(798), UWORD(330), UWORD(138), UWORD(2730), UWORD(6), UWORD(870), UWORD(14322), UWORD(510), UWORD(6), UWORD(1919190), UWORD(6), UWORD(13530), UWORD(1806), UWORD(690), UWORD(282), UWORD(46410), UWORD(66), UWORD(1590), UWORD(798), UWORD(870), UWORD(354), UWORD(56786730), UWORD(6), UWORD(510), UWORD(64722), UWORD(30), UWORD(4686), UWORD(140100870), UWORD(6), UWORD(30), UWORD(3318), UWORD(230010), UWORD(498), UWORD(3404310), UWORD(6), UWORD(61410), UWORD(272118), UWORD(1410), UWORD(6), UWORD(4501770), UWORD(6), UWORD(33330), UWORD(4326), UWORD(1590), UWORD(642), UWORD(209191710), UWORD(1518), UWORD(1671270), UWORD(42), UWORD(1770), UWORD(6), UWORD(2328255930), UWORD(6), UWORD(30), UWORD(4357878), UWORD(510), UWORD(8646), UWORD(4206930), UWORD(6), UWORD(4110), UWORD(274386), UWORD(679470), UWORD(6), UWORD(2381714790), UWORD(6), UWORD(4470), UWORD(2162622), UWORD(30), UWORD(138), UWORD(1794590070), UWORD(6), UWORD(230010), UWORD(130074), UWORD(2490), UWORD(1002), UWORD(3404310), UWORD(66), UWORD(5190), UWORD(2478), UWORD(1043970), UWORD(1074), }; void arith_bernoulli_number_denom(fmpz_t den, ulong n) { slong i; mp_limb_t p; const mp_limb_t * primes; if (n % 2 == 1) { fmpz_set_ui(den, 1 + (n == 1)); } else if (n <= BERNOULLI_DENOM_MAX_SMALL) { fmpz_set_ui(den, __bernoulli_denom_small[n / 2]); } else { n_prime_pi_bounds(&p, &p, n); primes = n_primes_arr_readonly(p + 2); fmpz_set_ui(den, UWORD(6)); for (i = 2; i < n; i++) { p = primes[i]; if (p - 1 > n) break; if (n % (p - 1) == 0) fmpz_mul_ui(den, den, p); } } }