/* Copyright (C) 2011 Fredrik Johansson This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "arith.h" static void __bernoulli_number_vec_mod_p(mp_ptr res, mp_ptr tmp, const fmpz * den, slong m, nmod_t mod) { mp_limb_t fac, c, t; slong k; /* x^2/(cosh(x)-1) = \sum_{k=0}^{\infty} 2(1-2k)/(2k)! B_2k x^(2k) */ /* Divide by factorials */ fac = n_factorial_mod2_preinv(2*m, mod.n, mod.ninv); c = n_invmod(fac, mod.n); for (k = m - 1; k >= 0; k--) { tmp[k] = c; c = n_mulmod2_preinv(c, (2*k+1)*(2*k+2), mod.n, mod.ninv); } _nmod_poly_inv_series(res, tmp, m, m, mod); res[0] = UWORD(1); /* N_(2k) = -1 * D_(2k) * (2k)! / (2k-1) */ c = n_negmod(UWORD(1), mod.n); for (k = 1; k < m; k++) { t = fmpz_fdiv_ui(den + 2*k, mod.n); t = n_mulmod2_preinv(c, t, mod.n, mod.ninv); res[k] = n_mulmod2_preinv(res[k], t, mod.n, mod.ninv); c = n_mulmod2_preinv(c, 2*(k+1)*(2*k-1), mod.n, mod.ninv); } } #define CRT_MAX_RESOLUTION 16 void _arith_bernoulli_number_vec_multi_mod(fmpz * num, fmpz * den, slong n) { fmpz_comb_t comb[CRT_MAX_RESOLUTION]; fmpz_comb_temp_t temp[CRT_MAX_RESOLUTION]; mp_limb_t * primes; mp_limb_t * residues; mp_ptr * polys; mp_ptr temppoly; nmod_t mod; slong i, j, k, m, num_primes, num_primes_k, resolution; flint_bitcnt_t size, prime_bits; if (n < 1) return; for (i = 0; i < n; i++) arith_bernoulli_number_denom(den + i, i); /* Number of nonzero entries (apart from B_1) */ m = (n + 1) / 2; resolution = FLINT_MAX(1, FLINT_MIN(CRT_MAX_RESOLUTION, m / 16)); /* Note that the denominators must be accounted for */ size = arith_bernoulli_number_size(n) + _fmpz_vec_max_bits(den, n) + 2; prime_bits = FLINT_BITS - 1; num_primes = (size + prime_bits - 1) / prime_bits; primes = flint_malloc(num_primes * sizeof(mp_limb_t)); residues = flint_malloc(num_primes * sizeof(mp_limb_t)); polys = flint_malloc(num_primes * sizeof(mp_ptr)); /* Compute Bernoulli numbers mod p */ primes[0] = n_nextprime(UWORD(1)< 1) fmpz_set_si(num + 1, WORD(-1)); for (k = 3; k < n; k += 2) fmpz_zero(num + k); /* Reconstruction */ for (k = 0; k < n; k += 2) { size = arith_bernoulli_number_size(k) + fmpz_bits(den + k) + 2; /* Use only as large a comb as needed */ num_primes_k = (size + prime_bits - 1) / prime_bits; for (i = 0; i < resolution; i++) { if (comb[i]->num_primes >= num_primes_k) break; } num_primes_k = comb[i]->num_primes; for (j = 0; j < num_primes_k; j++) residues[j] = polys[j][k / 2]; fmpz_multi_CRT_ui(num + k, residues, comb[i], temp[i], 1); } /* Cleanup */ for (k = 0; k < num_primes; k++) _nmod_vec_clear(polys[k]); _nmod_vec_clear(temppoly); for (i = 0; i < resolution; i++) { fmpz_comb_temp_clear(temp[i]); fmpz_comb_clear(comb[i]); } flint_free(primes); flint_free(residues); flint_free(polys); }