/*
Copyright (C) 2011 Fredrik Johansson
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include "arith.h"
static void
__bernoulli_number_vec_mod_p(mp_ptr res, mp_ptr tmp, const fmpz * den,
slong m, nmod_t mod)
{
mp_limb_t fac, c, t;
slong k;
/* x^2/(cosh(x)-1) = \sum_{k=0}^{\infty} 2(1-2k)/(2k)! B_2k x^(2k) */
/* Divide by factorials */
fac = n_factorial_mod2_preinv(2*m, mod.n, mod.ninv);
c = n_invmod(fac, mod.n);
for (k = m - 1; k >= 0; k--)
{
tmp[k] = c;
c = n_mulmod2_preinv(c, (2*k+1)*(2*k+2), mod.n, mod.ninv);
}
_nmod_poly_inv_series(res, tmp, m, m, mod);
res[0] = UWORD(1);
/* N_(2k) = -1 * D_(2k) * (2k)! / (2k-1) */
c = n_negmod(UWORD(1), mod.n);
for (k = 1; k < m; k++)
{
t = fmpz_fdiv_ui(den + 2*k, mod.n);
t = n_mulmod2_preinv(c, t, mod.n, mod.ninv);
res[k] = n_mulmod2_preinv(res[k], t, mod.n, mod.ninv);
c = n_mulmod2_preinv(c, 2*(k+1)*(2*k-1), mod.n, mod.ninv);
}
}
#define CRT_MAX_RESOLUTION 16
void _arith_bernoulli_number_vec_multi_mod(fmpz * num, fmpz * den, slong n)
{
fmpz_comb_t comb[CRT_MAX_RESOLUTION];
fmpz_comb_temp_t temp[CRT_MAX_RESOLUTION];
mp_limb_t * primes;
mp_limb_t * residues;
mp_ptr * polys;
mp_ptr temppoly;
nmod_t mod;
slong i, j, k, m, num_primes, num_primes_k, resolution;
flint_bitcnt_t size, prime_bits;
if (n < 1)
return;
for (i = 0; i < n; i++)
arith_bernoulli_number_denom(den + i, i);
/* Number of nonzero entries (apart from B_1) */
m = (n + 1) / 2;
resolution = FLINT_MAX(1, FLINT_MIN(CRT_MAX_RESOLUTION, m / 16));
/* Note that the denominators must be accounted for */
size = arith_bernoulli_number_size(n) + _fmpz_vec_max_bits(den, n) + 2;
prime_bits = FLINT_BITS - 1;
num_primes = (size + prime_bits - 1) / prime_bits;
primes = flint_malloc(num_primes * sizeof(mp_limb_t));
residues = flint_malloc(num_primes * sizeof(mp_limb_t));
polys = flint_malloc(num_primes * sizeof(mp_ptr));
/* Compute Bernoulli numbers mod p */
primes[0] = n_nextprime(UWORD(1)< 1)
fmpz_set_si(num + 1, WORD(-1));
for (k = 3; k < n; k += 2)
fmpz_zero(num + k);
/* Reconstruction */
for (k = 0; k < n; k += 2)
{
size = arith_bernoulli_number_size(k) + fmpz_bits(den + k) + 2;
/* Use only as large a comb as needed */
num_primes_k = (size + prime_bits - 1) / prime_bits;
for (i = 0; i < resolution; i++)
{
if (comb[i]->num_primes >= num_primes_k)
break;
}
num_primes_k = comb[i]->num_primes;
for (j = 0; j < num_primes_k; j++)
residues[j] = polys[j][k / 2];
fmpz_multi_CRT_ui(num + k, residues, comb[i], temp[i], 1);
}
/* Cleanup */
for (k = 0; k < num_primes; k++)
_nmod_vec_clear(polys[k]);
_nmod_vec_clear(temppoly);
for (i = 0; i < resolution; i++)
{
fmpz_comb_temp_clear(temp[i]);
fmpz_comb_clear(comb[i]);
}
flint_free(primes);
flint_free(residues);
flint_free(polys);
}