/* Copyright (C) 2011 Fredrik Johansson This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arith.h" static void __ramanujan_even_common_denom(fmpz * num, fmpz * den, slong start, slong n) { fmpz_t t, c, d, cden; slong j, k, m, mcase; int prodsize = 0; if (start >= n) return; fmpz_init(t); fmpz_init(c); fmpz_init(d); fmpz_init(cden); /* Common denominator */ arith_primorial(cden, n + 1); start += start % 2; /* Convert initial values to common denominator */ for (k = 0; k < start; k += 2) { fmpz_divexact(t, cden, den + k); fmpz_mul(num + k, num + k, t); } /* Ramanujan's recursive formula */ for (m = start; m < n; m += 2) { mcase = m % 6; fmpz_mul_ui(num + m, cden, m + UWORD(3)); fmpz_divexact_ui(num + m, num + m, UWORD(3)); if (mcase == 4) { fmpz_neg(num + m, num + m); fmpz_divexact_ui(num + m, num + m, UWORD(2)); } /* All factors are strictly smaller than m + 4; choose prodsize such that (m + 4)^prodsize fits in an slong. */ { #if FLINT64 if (m < WORD(1444)) prodsize = 6; else if (m < WORD(2097148)) prodsize = 3; else if (m < WORD(3037000495)) prodsize = 2; /* not very likely... */ else flint_abort(); #else if (m < WORD(32)) prodsize = 6; else if (m < WORD(1286)) prodsize = 3; else if (m < WORD(46336)) prodsize = 2; else flint_abort(); #endif } /* c = t = binomial(m+3, m) */ fmpz_set_ui(t, m + UWORD(1)); fmpz_mul_ui(t, t, m + UWORD(2)); fmpz_mul_ui(t, t, m + UWORD(3)); fmpz_divexact_ui(t, t, UWORD(6)); fmpz_set(c, t); for (j = 6; j <= m; j += 6) { slong r = m - j; /* c = binomial(m+3, m-j); */ switch (prodsize) { case 2: fmpz_mul_ui(c, c, (r+6)*(r+5)); fmpz_mul_ui(c, c, (r+4)*(r+3)); fmpz_mul_ui(c, c, (r+2)*(r+1)); fmpz_set_ui(d, (j+0)*(j+3)); fmpz_mul_ui(d, d, (j-2)*(j+2)); fmpz_mul_ui(d, d, (j-1)*(j+1)); fmpz_divexact(c, c, d); break; case 3: fmpz_mul_ui(c, c, (r+6)*(r+5)*(r+4)); fmpz_mul_ui(c, c, (r+3)*(r+2)*(r+1)); fmpz_set_ui(d, (j+0)*(j+3)*(j-2)); fmpz_mul_ui(d, d, (j+2)*(j-1)*(j+1)); fmpz_divexact(c, c, d); break; case 6: fmpz_mul_ui(c, c, (r+6)*(r+5)*(r+4)*(r+3)*(r+2)*(r+1)); fmpz_divexact_ui(c, c, (j+0)*(j+3)*(j-2)*(j+2)*(j-1)*(j+1)); break; } fmpz_submul(num + m, c, num + (m - j)); } fmpz_divexact(num + m, num + m, t); } /* Convert to separate denominators */ for (k = 0; k < n; k += 2) { arith_bernoulli_number_denom(den + k, k); fmpz_divexact(t, cden, den + k); fmpz_divexact(num + k, num + k, t); } fmpz_clear(t); fmpz_clear(c); fmpz_clear(d); fmpz_clear(cden); } void _arith_bernoulli_number_vec_recursive(fmpz * num, fmpz * den, slong n) { slong i, start; fmpz_t t; fmpz_t d; fmpz_init(t); fmpz_init(d); start = FLINT_MIN(BERNOULLI_SMALL_NUMER_LIMIT, n); /* Initial values */ for (i = 0; i < start; i += 2) _arith_bernoulli_number(num + i, den + i, i); __ramanujan_even_common_denom(num, den, start, n); /* Odd values */ for (i = 1; i < n; i += 2) _arith_bernoulli_number(num + i, den + i, i); fmpz_clear(d); fmpz_clear(t); }