/* Copyright (C) 2011 Fredrik Johansson This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arith.h" void arith_bernoulli_polynomial(fmpq_poly_t poly, ulong n) { fmpz_t t; fmpz * den; slong k; if (n == 0) { fmpq_poly_set_ui(poly, UWORD(1)); return; } fmpq_poly_fit_length(poly, n + 1); fmpz_init(t); den = _fmpz_vec_init(n + 1); _arith_bernoulli_number_vec(poly->coeffs, den, n + 1); /* Multiply the odd term by binomial(n,1) = n */ fmpz_mul_ui(poly->coeffs + 1, poly->coeffs + 1, n); /* Multiply even terms by binomial coefficients */ fmpz_one(t); for (k = 2; k <= n; k += 2) { fmpz_mul2_uiui(t, t, n-k+1, n-k+2); fmpz_divexact2_uiui(t, t, k, k-1); fmpz_mul(poly->coeffs + k, poly->coeffs + k, t); } /* Convert to common denominator */ arith_primorial(poly->den, n + 2); for (k = 0; k <= n; k++) { fmpz_mul(poly->coeffs + k, poly->coeffs+k, poly->den); fmpz_divexact(poly->coeffs + k, poly->coeffs + k, den + k); } _fmpz_poly_reverse(poly->coeffs, poly->coeffs, n + 1, n + 1); _fmpq_poly_set_length(poly, n + 1); fmpq_poly_canonicalise(poly); _fmpz_vec_clear(den, n + 1); fmpz_clear(t); }