/* Copyright (C) 2011 Fredrik Johansson This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arith.h" static const int mod4_tab[8] = { 2, 1, 3, 0, 0, 3, 1, 2 }; static const int gcd24_tab[24] = { 24, 1, 2, 3, 4, 1, 6, 1, 8, 3, 2, 1, 12, 1, 2, 3, 8, 1, 6, 1, 4, 3, 2, 1 }; static mp_limb_t n_sqrtmod_2exp(mp_limb_t a, int k) { mp_limb_t x; int i; if (a == 0 || k == 0) return 0; if (k == 1) return 1; if (k == 2) { if (a == 1) return 1; return 0; } x = 1; for (i = 3; i < k; i++) x += (a - x * x) / 2; if (k < FLINT_BITS) x &= ((UWORD(1) << k) - 1); return x; } static mp_limb_t n_sqrtmod_ppow(mp_limb_t a, mp_limb_t p, int k, mp_limb_t pk, mp_limb_t pkinv) { mp_limb_t r, t; int i; /* n_sqrtmod assumes that a is reduced */ r = n_sqrtmod(a % p, p); if (r == 0) return r; i = 1; while (i < k) { t = n_mulmod2_preinv(r, r, pk, pkinv); t = n_submod(t, a, pk); t = n_mulmod2_preinv(t, n_invmod(n_addmod(r, r, pk), pk), pk, pkinv); r = n_submod(r, t, pk); i *= 2; } return r; } void trigprod_mul_prime_power(trig_prod_t prod, mp_limb_t k, mp_limb_t n, mp_limb_t p, int exp) { mp_limb_t m, mod, inv; if (k <= 3) { if (k == 0) { prod->prefactor = 0; } else if (k == 2 && (n % 2 == 1)) { prod->prefactor *= -1; } else if (k == 3) { switch (n % 3) { case 0: prod->prefactor *= 2; prod->cos_p[prod->n] = 1; prod->cos_q[prod->n] = 18; break; case 1: prod->prefactor *= -2; prod->cos_p[prod->n] = 7; prod->cos_q[prod->n] = 18; break; case 2: prod->prefactor *= -2; prod->cos_p[prod->n] = 5; prod->cos_q[prod->n] = 18; break; } prod->n++; } return; } /* Power of 2 */ if (p == 2) { mod = 8 * k; inv = n_preinvert_limb(mod); m = n_submod(1, n_mod2_preinv(24 * n, mod, inv), mod); m = n_sqrtmod_2exp(m, exp + 3); m = n_mulmod2_preinv(m, n_invmod(3, mod), mod, inv); prod->prefactor *= n_jacobi(-1, m); if (exp % 2 == 1) prod->prefactor *= -1; prod->sqrt_p *= k; prod->cos_p[prod->n] = (mp_limb_signed_t)(k - m); prod->cos_q[prod->n] = 2 * k; prod->n++; return; } /* Power of 3 */ if (p == 3) { mod = 3 * k; inv = n_preinvert_limb(mod); m = n_submod(1, n_mod2_preinv(24 * n, mod, inv), mod); m = n_sqrtmod_ppow(m, p, exp + 1, mod, inv); m = n_mulmod2_preinv(m, n_invmod(8, mod), mod, inv); prod->prefactor *= (2 * n_jacobi_unsigned(m, 3)); if (exp % 2 == 0) prod->prefactor *= -1; prod->sqrt_p *= k; prod->sqrt_q *= 3; prod->cos_p[prod->n] = (mp_limb_signed_t)(3 * k - 8 * m); prod->cos_q[prod->n] = 6 * k; prod->n++; return; } /* Power of prime greater than 3 */ inv = n_preinvert_limb(k); m = n_submod(1, n_mod2_preinv(24 * n, k, inv), k); if (m % p == 0) { if (exp == 1) { prod->prefactor *= n_jacobi(3, k); prod->sqrt_p *= k; } else prod->prefactor = 0; return; } m = n_sqrtmod_ppow(m, p, exp, k, inv); if (m == 0) { prod->prefactor = 0; return; } prod->prefactor *= 2; prod->prefactor *= n_jacobi(3, k); prod->sqrt_p *= k; prod->cos_p[prod->n] = 4 * n_mulmod2_preinv(m, n_invmod(24 >= k ? n_mod2_preinv(24, k, inv) : 24, k), k, inv); prod->cos_q[prod->n] = k; prod->n++; } /* Solve (k2^2 * d2 * e) * n1 = (d2 * e * n + (k2^2 - 1) / d1) mod k2 TODO: test this on 32 bit */ static mp_limb_t solve_n1(mp_limb_t n, mp_limb_t k1, mp_limb_t k2, mp_limb_t d1, mp_limb_t d2, mp_limb_t e) { mp_limb_t inv, n1, u, t[2]; inv = n_preinvert_limb(k1); umul_ppmm(t[1], t[0], k2, k2); sub_ddmmss(t[1], t[0], t[1], t[0], UWORD(0), UWORD(1)); mpn_divrem_1(t, 0, t, 2, d1); n1 = n_ll_mod_preinv(t[1], t[0], k1, inv); n1 = n_mod2_preinv(n1 + d2*e*n, k1, inv); u = n_mulmod2_preinv(k2, k2, k1, inv); u = n_invmod(n_mod2_preinv(u * d2 * e, k1, inv), k1); n1 = n_mulmod2_preinv(n1, u, k1, inv); return n1; } void arith_hrr_expsum_factored(trig_prod_t prod, mp_limb_t k, mp_limb_t n) { n_factor_t fac; int i; if (k <= 1) { prod->prefactor = k; return; } n_factor_init(&fac); n_factor(&fac, k, 0); /* Repeatedly factor A_k(n) into A_k1(n1)*A_k2(n2) with k1, k2 coprime */ for (i = 0; i + 1 < fac.num && prod->prefactor != 0; i++) { mp_limb_t p, k1, k2, inv, n1, n2; p = fac.p[i]; /* k = 2 * k1 with k1 odd */ if (p == UWORD(2) && fac.exp[i] == 1) { k2 = k / 2; inv = n_preinvert_limb(k2); n2 = n_invmod(32 >= k2 ? n_mod2_preinv(32, k2, inv) : 32, k2); n2 = n_mulmod2_preinv(n2, n_mod2_preinv(8*n + 1, k2, inv), k2, inv); n1 = ((k2 % 8 == 3) || (k2 % 8 == 5)) ^ (n & 1); trigprod_mul_prime_power(prod, 2, n1, 2, 1); k = k2; n = n2; } /* k = 4 * k1 with k1 odd */ else if (p == UWORD(2) && fac.exp[i] == 2) { k2 = k / 4; inv = n_preinvert_limb(k2); n2 = n_invmod(128 >= k2 ? n_mod2_preinv(128, k2, inv) : 128, k2); n2 = n_mulmod2_preinv(n2, n_mod2_preinv(8*n + 5, k2, inv), k2, inv); n1 = (n + mod4_tab[(k2 / 2) % 8]) % 4; trigprod_mul_prime_power(prod, 4, n1, 2, 2); prod->prefactor *= -1; k = k2; n = n2; } /* k = k1 * k2 with k1 odd or divisible by 8 */ else { mp_limb_t d1, d2, e; k1 = n_pow(fac.p[i], fac.exp[i]); k2 = k / k1; d1 = gcd24_tab[k1 % 24]; d2 = gcd24_tab[k2 % 24]; e = 24 / (d1 * d2); n1 = solve_n1(n, k1, k2, d1, d2, e); n2 = solve_n1(n, k2, k1, d2, d1, e); trigprod_mul_prime_power(prod, k1, n1, fac.p[i], fac.exp[i]); k = k2; n = n2; } } if (fac.num != 0 && prod->prefactor != 0) trigprod_mul_prime_power(prod, k, n, fac.p[fac.num - 1], fac.exp[fac.num - 1]); }