.. _double-extras: **double_extras.h** -- support functions for double arithmetic =============================================================================== Random functions -------------------------------------------------------------------------------- .. function:: double d_randtest(flint_rand_t state) Returns a random number in the interval `[0.5, 1)`. .. function:: double d_randtest_signed(flint_rand_t state, slong minexp, slong maxexp) Returns a random signed number with exponent between ``minexp`` and ``maxexp`` or zero. .. function:: double d_randtest_special(flint_rand_t state, slong minexp, slong maxexp) Returns a random signed number with exponent between ``minexp`` and ``maxexp``, zero, ``D_NAN`` or \pm``D_INF``. Arithmetic -------------------------------------------------------------------------------- .. function:: double d_polyval(const double * poly, int len, double x) Uses Horner's rule to evaluate the the polynomial defined by the given ``len`` coefficients. Requires that ``len`` is nonzero. Special functions -------------------------------------------------------------------------------- .. function:: double d_lambertw(double x) Computes the principal branch of the Lambert W function, solving the equation `x = W(x) \exp(W(x))`. If `x < -1/e`, the solution is complex, and NaN is returned. Depending on the magnitude of `x`, we start from a piecewise rational approximation or a zeroth-order truncation of the asymptotic expansion at infinity, and perform 0, 1 or 2 iterations with Halley's method to obtain full accuracy. A test of `10^7` random inputs showed a maximum relative error smaller than 0.95 times ``DBL_EPSILON`` (`2^{-52}`) for positive `x`. Accuracy for negative `x` is slightly worse, and can grow to about 10 times ``DBL_EPSILON`` close to `-1/e`. However, accuracy may be worse depending on compiler flags and the accuracy of the system libm functions. .. function:: int d_is_nan(double x) Returns a nonzero integral value if ``x`` is ``D_NAN``, and otherwise returns 0. .. function:: double d_log2(double x) Returns the base 2 logarithm of ``x`` provided ``x`` is positive. If a domain or pole error occurs, the appropriate error value is returned.