.. _fmpq-mpoly-factor: **fmpq_mpoly_factor.h** -- factorisation of multivariate polynomials over the rational numbers ============================================================================================== Types, macros and constants ------------------------------------------------------------------------------- .. type:: fmpq_mpoly_factor_struct A struct for holding a factored rational polynomial. There is a single constant and a product of bases to corresponding exponents. .. type:: fmpq_mpoly_factor_t An array of length `1` of ``fmpq_mpoly_factor_struct``. Memory management -------------------------------------------------------------------------------- .. function:: void fmpq_mpoly_factor_init(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx) Initialise *f*. .. function:: void fmpq_mpoly_factor_clear(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx) Clear *f*. Basic manipulation -------------------------------------------------------------------------------- .. function:: void fmpq_mpoly_factor_swap(fmpq_mpoly_factor_t f, fmpq_mpoly_factor_t g, const fmpq_mpoly_ctx_t ctx) Efficiently swap *f* and *g*. .. function:: slong fmpq_mpoly_factor_length(const fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx) Return the length of the product in *f*. .. function:: void fmpq_mpoly_factor_get_constant_fmpq(fmpq_t c, const fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx) Set *c* to the constant of *f*. .. function:: void fmpq_mpoly_factor_get_base(fmpq_mpoly_t B, const fmpq_mpoly_factor_t f, slong i, const fmpq_mpoly_ctx_t ctx) void fmpq_mpoly_factor_swap_base(fmpq_mpoly_t B, fmpq_mpoly_factor_t f, slong i, const fmpq_mpoly_ctx_t ctx) Set (resp. swap) *B* to (resp. with) the base of the term of index *i* in *A*. .. function:: slong fmpq_mpoly_factor_get_exp_si(fmpq_mpoly_factor_t f, slong i, const fmpq_mpoly_ctx_t ctx) Return the exponent of the term of index *i* in *A*. It is assumed to fit an ``slong``. .. function:: void fmpq_mpoly_factor_sort(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx) Sort the product of *f* first by exponent and then by base. .. function:: int fmpq_mpoly_factor_make_monic(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx) int fmpq_mpoly_factor_make_integral(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx) Make the bases in *f* monic (resp. integral and primitive with positive leading coefficient). Return `1` for success, `0` for failure. Factorisation -------------------------------------------------------------------------------- A return of `1` indicates that the function was successful. Otherwise, the return is `0` and *f* is undefined. None of these functions multiply *f* by *A*: *f* is simply set to a factorisation of *A*, and thus these functions should not depend on the initial value of the output *f*. The normalization of the factors is not yet specified: use :func:`fmpq_mpoly_factor_make_monic` or :func:`fmpq_mpoly_factor_make_integral` for common normalizations. .. function:: int fmpq_mpoly_factor_squarefree(fmpq_mpoly_factor_t f, const fmpq_mpoly_t A, const fmpq_mpoly_ctx_t ctx) Set *f* to a factorization of *A* where the bases are primitive and pairwise relatively prime. If the product of all irreducible factors with a given exponent is desired, it is recommend to call :func:`fmpq_mpoly_factor_sort` and then multiply the bases with the desired exponent. .. function:: int fmpq_mpoly_factor(fmpq_mpoly_factor_t f, const fmpq_mpoly_t A, const fmpq_mpoly_ctx_t ctx) Set *f* to a factorization of *A* where the bases are irreducible.