.. _fmpz-mod: **fmpz_mod.h** -- arithmetic modulo integers =============================================================================== Description. Types, macros and constants ------------------------------------------------------------------------------- .. type:: fmpz_mod_ctx_struct .. type:: fmpz_mod_ctx_t The context object for arithmetic modulo integers. Context object -------------------------------------------------------------------------------- .. function:: void fmpz_mod_ctx_init(fmpz_mod_ctx_t ctx, const fmpz_t n) Initialise ``ctx`` for arithmetic modulo ``n``, which is expected to be positive. .. function:: void fmpz_mod_ctx_clear(fmpz_mod_ctx_t ctx) Free any memory used by ``ctx``. .. function:: void fmpz_mod_ctx_set_modulus(fmpz_mod_ctx_t ctx, const fmpz_t n) Reconfigure ``ctx`` for arithmetic modulo ``n``. Arithmetic -------------------------------------------------------------------------------- Unless specified otherwise all functions here expect their relevant arguments to be in the canonical range `[0,n)`. Comparison of elements against each other or against zero can be accomplished with func::fmpz_equal or func::fmpz_is_zero without a context. .. function:: int fmpz_mod_is_canonical(const fmpz_t a, const fmpz_mod_ctx_t ctx) Return ``1`` if `a` is in the canonical range `[0,n)` and ``0`` otherwise. .. function:: int fmpz_mod_is_one(const fmpz_t a, const fmpz_mod_ctx_t ctx) Return ``1`` if `a` is `1` modulo `n` and return ``0`` otherwise. .. function:: void fmpz_mod_add(fmpz_t a, const fmpz_t b, const fmpz_t c, const fmpz_mod_ctx_t ctx) Set `a` to `b+c` modulo `n`. .. function:: void fmpz_mod_add_fmpz(fmpz_t a, const fmpz_t b, const fmpz_t c, const fmpz_mod_ctx_t ctx); void fmpz_mod_add_ui(fmpz_t a, const fmpz_t b, ulong c, const fmpz_mod_ctx_t ctx); void fmpz_mod_add_si(fmpz_t a, const fmpz_t b, slong c, const fmpz_mod_ctx_t ctx); Set `a` to `b+c` modulo `n` where only `b` is assumed to be canonical. .. function:: void fmpz_mod_sub(fmpz_t a, const fmpz_t b, const fmpz_t c, const fmpz_mod_ctx_t ctx) Set `a` to `b-c` modulo `n`. .. function:: void fmpz_mod_sub_fmpz(fmpz_t a, const fmpz_t b, const fmpz_t c, const fmpz_mod_ctx_t ctx); void fmpz_mod_sub_ui(fmpz_t a, const fmpz_t b, ulong c, const fmpz_mod_ctx_t ctx); void fmpz_mod_sub_si(fmpz_t a, const fmpz_t b, slong c, const fmpz_mod_ctx_t ctx); Set `a` to `b-c` modulo `n` where only `b` is assumed to be canonical. .. function:: void fmpz_mod_fmpz_sub(fmpz_t a, const fmpz_t b, const fmpz_t c, const fmpz_mod_ctx_t ctx); void fmpz_mod_ui_sub(fmpz_t a, ulong b, const fmpz_t c, const fmpz_mod_ctx_t ctx); void fmpz_mod_si_sub(fmpz_t a, slong b, const fmpz_t c, const fmpz_mod_ctx_t ctx); Set `a` to `b-c` modulo `n` where only `c` is assumed to be canonical. .. function:: void fmpz_mod_neg(fmpz_t a, const fmpz_t b, const fmpz_mod_ctx_t ctx) Set `a` to `-b` modulo `n`. .. function:: void fmpz_mod_mul(fmpz_t a, const fmpz_t b, const fmpz_t c, const fmpz_mod_ctx_t ctx) Set `a` to `b*c` modulo `n`. .. function:: void fmpz_mod_inv(fmpz_t a, const fmpz_t b, const fmpz_mod_ctx_t ctx) Set `a` to `b^{-1}` modulo `n`. This function expects that `b` is invertible modulo `n` and throws if this not the case. Invertibility maybe tested with func:`fmpz_mod_pow_fmpz` or func:`fmpz_mod_divides`. .. function:: int fmpz_mod_divides(fmpz_t a, const fmpz_t b, const fmpz_t c, const fmpz_mod_ctx_t ctx) If `a*c = b \mod n` has a solution for `a` return `1` and set `a` to such a solution. Otherwise return `0` and leave `a` undefined. .. function:: void fmpz_mod_pow_ui(fmpz_t a, const fmpz_t b, ulong e, const fmpz_mod_ctx_t ctx) Set `a` to `b^e` modulo `n`. .. function:: int fmpz_mod_pow_fmpz(fmpz_t a, const fmpz_t b, const fmpz_t e, const fmpz_mod_ctx_t ctx) Try to set `a` to `b^e` modulo `n`. If `e < 0` and `b` is not invertible modulo `n`, the return is `0`. Otherwise, the return is `1`. Discrete Logarithms via Pohlig-Hellman -------------------------------------------------------------------------------- .. function:: void fmpz_mod_discrete_log_pohlig_hellman_init(fmpz_mod_discrete_log_pohlig_hellman_t L) Initialize ``L``. Upon initialization ``L`` is not ready for computation. .. function:: void fmpz_mod_discrete_log_pohlig_hellman_clear(fmpz_mod_discrete_log_pohlig_hellman_t L) Free any space used by ``L``. .. function:: double fmpz_mod_discrete_log_pohlig_hellman_precompute_prime(fmpz_mod_discrete_log_pohlig_hellman_t L, const fmpz_t p) Configure ``L`` for discrete logarithms modulo ``p`` to an internally chosen base. It is assumed that ``p`` is prime. The return is an estimate on the number of multiplications needed for one run. .. function:: const fmpz * fmpz_mod_discrete_log_pohlig_hellman_primitive_root(const fmpz_mod_discrete_log_pohlig_hellman_t L) Return the internally stored base. .. function:: void fmpz_mod_discrete_log_pohlig_hellman_run(fmpz_t x, const fmpz_mod_discrete_log_pohlig_hellman_t L, const fmpz_t y) Set ``x`` to the logarithm of ``y`` with respect to the internally stored base. ``y`` is expected to be reduced modulo the ``p``. The function is undefined if the logarithm does not exist. .. function:: int fmpz_next_smooth_prime(fmpz_t a, const fmpz_t b) Either return `1` and set `a` to a smooth prime strictly greater than `b`, or return `0` and set `a` to `0`. The smooth primes returned by this function currently have no prime factor of `a-1` greater than `23`, but this should not be relied upon.