.. _fmpz-mod-poly-factor: **fmpz_mod_poly_factor.h** -- factorisation of polynomials over integers mod n ================================================================================================== Description. Types, macros and constants ------------------------------------------------------------------------------- .. type:: fmpz_mod_poly_factor_struct A structure representing a polynomial in factorised form as a product of polynomials with associated exponents. .. type:: fmpz_mod_poly_factor_t An array of length 1 of ``fmpz_mpoly_factor_struct``. Factorisation -------------------------------------------------------------------------------- .. function:: void fmpz_mod_poly_factor_init(fmpz_mod_poly_factor_t fac, const fmpz_mod_ctx_t ctx) Initialises ``fac`` for use. .. function:: void fmpz_mod_poly_factor_clear(fmpz_mod_poly_factor_t fac, const fmpz_mod_ctx_t ctx) Frees all memory associated with ``fac``. .. function:: void fmpz_mod_poly_factor_realloc(fmpz_mod_poly_factor_t fac, slong alloc, const fmpz_mod_ctx_t ctx) Reallocates the factor structure to provide space for precisely ``alloc`` factors. .. function:: void fmpz_mod_poly_factor_fit_length(fmpz_mod_poly_factor_t fac, slong len, const fmpz_mod_ctx_t ctx) Ensures that the factor structure has space for at least ``len`` factors. This function takes care of the case of repeated calls by always, at least doubling the number of factors the structure can hold. .. function:: void fmpz_mod_poly_factor_set(fmpz_mod_poly_factor_t res, const fmpz_mod_poly_factor_t fac, const fmpz_mod_ctx_t ctx) Sets ``res`` to the same factorisation as ``fac``. .. function:: void fmpz_mod_poly_factor_print(const fmpz_mod_poly_factor_t fac, const fmpz_mod_ctx_t ctx) Prints the entries of ``fac`` to standard output. .. function:: void fmpz_mod_poly_factor_insert(fmpz_mod_poly_factor_t fac, const fmpz_mod_poly_t poly, slong exp, const fmpz_mod_ctx_t ctx) Inserts the factor ``poly`` with multiplicity ``exp`` into the factorisation ``fac``. If ``fac`` already contains ``poly``, then ``exp`` simply gets added to the exponent of the existing entry. .. function:: void fmpz_mod_poly_factor_concat(fmpz_mod_poly_factor_t res, const fmpz_mod_poly_factor_t fac, const fmpz_mod_ctx_t ctx) Concatenates two factorisations. This is equivalent to calling :func:`fmpz_mod_poly_factor_insert` repeatedly with the individual factors of ``fac``. Does not support aliasing between ``res`` and ``fac``. .. function:: void fmpz_mod_poly_factor_pow(fmpz_mod_poly_factor_t fac, slong exp, const fmpz_mod_ctx_t ctx) Raises ``fac`` to the power ``exp``. .. function:: int fmpz_mod_poly_is_irreducible(const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx) Returns 1 if the polynomial ``f`` is irreducible, otherwise returns 0. .. function:: int fmpz_mod_poly_is_irreducible_ddf(const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx) Returns 1 if the polynomial ``f`` is irreducible, otherwise returns 0. Uses fast distinct-degree factorisation. .. function:: int fmpz_mod_poly_is_irreducible_rabin(const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx) Returns 1 if the polynomial ``f`` is irreducible, otherwise returns 0. Uses Rabin irreducibility test. .. function:: int fmpz_mod_poly_is_irreducible_rabin_f(fmpz_t r, const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx) Either sets `r` to `1` and return 1 if the polynomial ``f`` is irreducible or `0` otherwise, or set `r` to a nontrivial factor of `p`. This algorithm correctly determines whether `f` to is irreducible over `\mathbb{Z}/p\mathbb{Z}`, even for composite `f`, or it finds a factor of `p`. .. function:: int _fmpz_mod_poly_is_squarefree(const fmpz * f, slong len, const fmpz_t p) Returns 1 if ``(f, len)`` is squarefree, and 0 otherwise. As a special case, the zero polynomial is not considered squarefree. There are no restrictions on the length. .. function:: int _fmpz_mod_poly_is_squarefree_f(fmpz_t fac, const fmpz * f, slong len, const fmpz_t p) If `fac` returns with the value `1` then the function operates as per :func:`_fmpz_mod_poly_is_squarefree`, otherwise `f` is set to a nontrivial factor of `p`. .. function:: int fmpz_mod_poly_is_squarefree(const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx) Returns 1 if ``f`` is squarefree, and 0 otherwise. As a special case, the zero polynomial is not considered squarefree. .. function:: int fmpz_mod_poly_is_squarefree_f(fmpz_t fac, const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx) If `fac` returns with the value `1` then the function operates as per :func:`fmpz_mod_poly_is_squarefree`, otherwise `f` is set to a nontrivial factor of `p`. .. function:: int fmpz_mod_poly_factor_equal_deg_prob(fmpz_mod_poly_t factor, flint_rand_t state, const fmpz_mod_poly_t pol, slong d, const fmpz_mod_ctx_t ctx) Probabilistic equal degree factorisation of ``pol`` into irreducible factors of degree ``d``. If it passes, a factor is placed in ``factor`` and 1 is returned, otherwise 0 is returned and the value of factor is undetermined. Requires that ``pol`` be monic, non-constant and squarefree. .. function:: void fmpz_mod_poly_factor_equal_deg(fmpz_mod_poly_factor_t factors, const fmpz_mod_poly_t pol, slong d, const fmpz_mod_ctx_t ctx) Assuming ``pol`` is a product of irreducible factors all of degree ``d``, finds all those factors and places them in factors. Requires that ``pol`` be monic, non-constant and squarefree. .. function:: void fmpz_mod_poly_factor_distinct_deg(fmpz_mod_poly_factor_t res, const fmpz_mod_poly_t poly, slong * const *degs, const fmpz_mod_ctx_t ctx) Factorises a monic non-constant squarefree polynomial ``poly`` of degree n into factors `f[d]` such that for `1 \leq d \leq n` `f[d]` is the product of the monic irreducible factors of ``poly`` of degree `d`. Factors `f[d]` are stored in ``res``, and the degree `d` of the irreducible factors is stored in ``degs`` in the same order as the factors. Requires that ``degs`` has enough space for `(n/2)+1 * sizeof(slong)`. .. function:: void fmpz_mod_poly_factor_distinct_deg_threaded(fmpz_mod_poly_factor_t res, const fmpz_mod_poly_t poly, slong * const *degs, const fmpz_mod_ctx_t ctx) Multithreaded version of :func:`fmpz_mod_poly_factor_distinct_deg`. .. function:: void fmpz_mod_poly_factor_squarefree(fmpz_mod_poly_factor_t res, const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx) Sets ``res`` to a squarefree factorization of ``f``. .. function:: void fmpz_mod_poly_factor(fmpz_mod_poly_factor_t res, const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx) Factorises a non-constant polynomial ``f`` into monic irreducible factors choosing the best algorithm for given modulo and degree. Choice is based on heuristic measurements. .. function:: void fmpz_mod_poly_factor_cantor_zassenhaus(fmpz_mod_poly_factor_t res, const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx) Factorises a non-constant polynomial ``f`` into monic irreducible factors using the Cantor-Zassenhaus algorithm. .. function:: void fmpz_mod_poly_factor_kaltofen_shoup(fmpz_mod_poly_factor_t res, const fmpz_mod_poly_t poly, const fmpz_mod_ctx_t ctx) Factorises a non-constant polynomial ``poly`` into monic irreducible factors using the fast version of Cantor-Zassenhaus algorithm proposed by Kaltofen and Shoup (1998). More precisely this algorithm uses a baby step/giant step strategy for the distinct-degree factorization step. If :func:`flint_get_num_threads` is greater than one :func:`fmpz_mod_poly_factor_distinct_deg_threaded` is used. .. function:: void fmpz_mod_poly_factor_berlekamp(fmpz_mod_poly_factor_t factors, const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx) Factorises a non-constant polynomial ``f`` into monic irreducible factors using the Berlekamp algorithm. .. function:: void _fmpz_mod_poly_interval_poly_worker(void* arg_ptr) Worker function to compute interval polynomials in distinct degree factorisation. Input/output is stored in :type:`fmpz_mod_poly_interval_poly_arg_t`. Root Finding -------------------------------------------------------------------------------- .. function:: void fmpz_mod_poly_roots(fmpz_mod_poly_factor_t r, const fmpz_mod_poly_t f, int with_multiplicity, const fmpz_mod_ctx_t ctx) Fill `r` with factors of the form `x - r_i` where the `r_i` are the distinct roots of a nonzero `f` in `Z/pZ`. It is expected and not checked that the modulus of `ctx` is prime. If `with_multiplicity` is zero, the exponent `e_i` of the factor `x - r_i` is `1`. Otherwise, it is the largest `e_i` such that `(x-r_i)^e_i` divides `f`. This function throws if `f` is zero, but is otherwise always successful. .. function:: int fmpz_mod_poly_roots_factored(fmpz_mod_poly_factor_t r, const fmpz_mod_poly_t f, int with_multiplicity, const fmpz_factor_t n, const fmpz_mod_ctx_t ctx) Fill `r` with factors of the form `x - r_i` where the `r_i` are the distinct roots of a nonzero `f` in `Z/nZ`. It is expected and not checked that `n` is a prime factorization of the modulus of `ctx`. If `with_multiplicity` is zero, the exponent `e_i` of the factor `x - r_i` is `1`. Otherwise, it is the largest `e_i` such that `(x-r_i)^e_i` divides `f`. The roots are first found modulo the primes in `n`, then lifted to the corresponding prime powers, then combined into roots of the original polynomial `f`. A return of `1` indicates the function was successful. A return of `0` indicates the function was not able to find the roots, possibly because there are too many of them. This function throws if `f` is zero.