.. _fq: **fq.h** -- finite fields =============================================================================== Description. Types, macros and constants ------------------------------------------------------------------------------- .. type:: fq_ctx_struct .. type:: fq_ctx_t Description. .. type:: fq_struct .. type:: fq_t Description. Context Management -------------------------------------------------------------------------------- .. function:: void fq_ctx_init(fq_ctx_t ctx, const fmpz_t p, slong d, const char *var) Initialises the context for prime `p` and extension degree `d`, with name ``var`` for the generator. By default, it will try use a Conway polynomial; if one is not available, a random irreducible polynomial will be used. Assumes that `p` is a prime. Assumes that the string ``var`` is a null-terminated string of length at least one. .. function:: int _fq_ctx_init_conway(fq_ctx_t ctx, const fmpz_t p, slong d, const char *var) Attempts to initialise the context for prime `p` and extension degree `d`, with name ``var`` for the generator using a Conway polynomial for the modulus. Returns `1` if the Conway polynomial is in the database for the given size and the initialization is successful; otherwise, returns `0`. Assumes that `p` is a prime. Assumes that the string ``var`` is a null-terminated string of length at least one. .. function:: void fq_ctx_init_conway(fq_ctx_t ctx, const fmpz_t p, slong d, const char *var) Initialises the context for prime `p` and extension degree `d`, with name ``var`` for the generator using a Conway polynomial for the modulus. Assumes that `p` is a prime. Assumes that the string ``var`` is a null-terminated string of length at least one. .. function:: void fq_ctx_init_modulus(fq_ctx_t ctx, const fmpz_mod_poly_t modulus, const fmpz_mod_ctx_t ctxp, const char *var) Initialises the context for given ``modulus`` with name ``var`` for the generator. Assumes that ``modulus`` is an irreducible polynomial over the finite field `\mathbf{F}_{p}` in ``ctxp``. Assumes that the string ``var`` is a null-terminated string of length at least one. .. function:: void fq_ctx_clear(fq_ctx_t ctx) Clears all memory that has been allocated as part of the context. .. function:: const fmpz_mod_poly_struct* fq_ctx_modulus(const fq_ctx_t ctx) Returns a pointer to the modulus in the context. .. function:: long fq_ctx_degree(const fq_ctx_t ctx) Returns the degree of the field extension `[\mathbf{F}_{q} : \mathbf{F}_{p}]`, which is equal to `\log_{p} q`. .. function:: fmpz * fq_ctx_prime(const fq_ctx_t ctx) Returns a pointer to the prime `p` in the context. .. function:: void fq_ctx_order(fmpz_t f, const fq_ctx_t ctx) Sets `f` to be the size of the finite field. .. function:: int fq_ctx_fprint(FILE * file, const fq_ctx_t ctx) Prints the context information to ``file``. Returns 1 for a success and a negative number for an error. .. function:: void fq_ctx_print(const fq_ctx_t ctx) Prints the context information to ``stdout``. .. function:: void fq_ctx_randtest(fq_ctx_t ctx) Initializes ``ctx`` to a random finite field. Assumes that ``fq_ctx_init`` has not been called on ``ctx`` already. .. function:: void fq_ctx_randtest_reducible(fq_ctx_t ctx) Initializes ``ctx`` to a random extension of a prime field. The modulus may or may not be irreducible. Assumes that ``fq_ctx_init`` has not been called on ``ctx`` already. Memory management -------------------------------------------------------------------------------- .. function:: void fq_init(fq_t rop, const fq_ctx_t ctx) Initialises the element ``rop``, setting its value to `0`. .. function:: void fq_init2(fq_t rop, const fq_ctx_t ctx) Initialises ``poly`` with at least enough space for it to be an element of ``ctx`` and sets it to `0`. .. function:: void fq_clear(fq_t rop, const fq_ctx_t ctx) Clears the element ``rop``. .. function:: void _fq_sparse_reduce(fmpz *R, slong lenR, const fq_ctx_t ctx) Reduces ``(R, lenR)`` modulo the polynomial `f` given by the modulus of ``ctx``. .. function:: void _fq_dense_reduce(fmpz *R, slong lenR, const fq_ctx_t ctx) Reduces ``(R, lenR)`` modulo the polynomial `f` given by the modulus of ``ctx`` using Newton division. .. function:: void _fq_reduce(fmpz *r, slong lenR, const fq_ctx_t ctx) Reduces ``(R, lenR)`` modulo the polynomial `f` given by the modulus of ``ctx``. Does either sparse or dense reduction based on ``ctx->sparse_modulus``. .. function:: void fq_reduce(fq_t rop, const fq_ctx_t ctx) Reduces the polynomial ``rop`` as an element of `\mathbf{F}_p[X] / (f(X))`. Basic arithmetic -------------------------------------------------------------------------------- .. function:: void fq_add(fq_t rop, const fq_t op1, const fq_t op2, const fq_ctx_t ctx) Sets ``rop`` to the sum of ``op1`` and ``op2``. .. function:: void fq_sub(fq_t rop, const fq_t op1, const fq_t op2, const fq_ctx_t ctx) Sets ``rop`` to the difference of ``op1`` and ``op2``. .. function:: void fq_sub_one(fq_t rop, const fq_t op1, const fq_ctx_t ctx) Sets ``rop`` to the difference of ``op1`` and `1`. .. function:: void fq_neg(fq_t rop, const fq_t op, const fq_ctx_t ctx) Sets ``rop`` to the negative of ``op``. .. function:: void fq_mul(fq_t rop, const fq_t op1, const fq_t op2, const fq_ctx_t ctx) Sets ``rop`` to the product of ``op1`` and ``op2``, reducing the output in the given context. .. function:: void fq_mul_fmpz(fq_t rop, const fq_t op, const fmpz_t x, const fq_ctx_t ctx) Sets ``rop`` to the product of ``op`` and `x`, reducing the output in the given context. .. function:: void fq_mul_si(fq_t rop, const fq_t op, slong x, const fq_ctx_t ctx) Sets ``rop`` to the product of ``op`` and `x`, reducing the output in the given context. .. function:: void fq_mul_ui(fq_t rop, const fq_t op, ulong x, const fq_ctx_t ctx) Sets ``rop`` to the product of ``op`` and `x`, reducing the output in the given context. .. function:: void fq_sqr(fq_t rop, const fq_t op, const fq_ctx_t ctx) Sets ``rop`` to the square of ``op``, reducing the output in the given context. .. function:: void fq_div(fq_t rop, const fq_t op1, const fq_t op2, const fq_ctx_t ctx) Sets ``rop`` to the quotient of ``op1`` and ``op2``, reducing the output in the given context. .. function:: void _fq_inv(fmpz *rop, const fmpz *op, slong len, const fq_ctx_t ctx) Sets ``(rop, d)`` to the inverse of the non-zero element ``(op, len)``. .. function:: void fq_inv(fq_t rop, const fq_t op, const fq_ctx_t ctx) Sets ``rop`` to the inverse of the non-zero element ``op``. .. function:: void fq_gcdinv(fq_t f, fq_t inv, const fq_t op, const fq_ctx_t ctx) Sets ``inv`` to be the inverse of ``op`` modulo the modulus of ``ctx``. If ``op`` is not invertible, then ``f`` is set to a factor of the modulus; otherwise, it is set to one. .. function:: void _fq_pow(fmpz *rop, const fmpz *op, slong len, const fmpz_t e, const fq_ctx_t ctx) Sets ``(rop, 2*d-1)`` to ``(op,len)`` raised to the power `e`, reduced modulo `f(X)`, the modulus of ``ctx``. Assumes that `e \geq 0` and that ``len`` is positive and at most `d`. Although we require that ``rop`` provides space for `2d - 1` coefficients, the output will be reduced modulo `f(X)`, which is a polynomial of degree `d`. Does not support aliasing. .. function:: void fq_pow(fq_t rop, const fq_t op, const fmpz_t e, const fq_ctx_t ctx) Sets ``rop`` the ``op`` raised to the power `e`. Currently assumes that `e \geq 0`. Note that for any input ``op``, ``rop`` is set to `1` whenever `e = 0`. .. function:: void fq_pow_ui(fq_t rop, const fq_t op, const ulong e, const fq_ctx_t ctx) Sets ``rop`` the ``op`` raised to the power `e`. Currently assumes that `e \geq 0`. Note that for any input ``op``, ``rop`` is set to `1` whenever `e = 0`. Roots -------------------------------------------------------------------------------- .. function:: int fq_sqrt(fq_t rop, const fq_t op1, const fq_ctx_t ctx) Sets ``rop`` to the square root of ``op1`` if it is a square, and return `1`, otherwise return `0`. .. function:: void fq_pth_root(fq_t rop, const fq_t op1, const fq_ctx_t ctx) Sets ``rop`` to a `p^{th}` root root of ``op1``. Currently, this computes the root by raising ``op1`` to `p^{d-1}` where `d` is the degree of the extension. .. function:: int fq_is_square(const fq_t op, const fq_ctx_t ctx) Return ``1`` if ``op`` is a square. Output -------------------------------------------------------------------------------- .. function:: int fq_fprint_pretty(FILE *file, const fq_t op, const fq_ctx_t ctx) Prints a pretty representation of ``op`` to ``file``. In the current implementation, always returns `1`. The return code is part of the function's signature to allow for a later implementation to return the number of characters printed or a non-positive error code. .. function:: int fq_print_pretty(const fq_t op, const fq_ctx_t ctx) Prints a pretty representation of ``op`` to ``stdout``. In the current implementation, always returns `1`. The return code is part of the function's signature to allow for a later implementation to return the number of characters printed or a non-positive error code. .. function:: void fq_fprint(FILE * file, const fq_t op, const fq_ctx_t ctx) Prints a representation of ``op`` to ``file``. For further details on the representation used, see :func:`fmpz_mod_poly_fprint`. .. function:: void fq_print(const fq_t op, const fq_ctx_t ctx) Prints a representation of ``op`` to ``stdout``. For further details on the representation used, see :func:`fmpz_mod_poly_print`. .. function:: char * fq_get_str(const fq_t op, const fq_ctx_t ctx) Returns the plain FLINT string representation of the element ``op``. .. function:: char * fq_get_str_pretty(const fq_t op, const fq_ctx_t ctx) Returns a pretty representation of the element ``op`` using the null-terminated string ``x`` as the variable name. Randomisation -------------------------------------------------------------------------------- .. function:: void fq_randtest(fq_t rop, flint_rand_t state, const fq_ctx_t ctx) Generates a random element of `\mathbf{F}_q`. .. function:: void fq_randtest_not_zero(fq_t rop, flint_rand_t state, const fq_ctx_t ctx) Generates a random non-zero element of `\mathbf{F}_q`. .. function:: void fq_randtest_dense(fq_t rop, flint_rand_t state, const fq_ctx_t ctx) Generates a random element of `\mathbf{F}_q` which has an underlying polynomial with dense coefficients. .. function:: void fq_rand(fq_t rop, flint_rand_t state, const fq_ctx_t ctx) Generates a high quality random element of `\mathbf{F}_q`. .. function:: void fq_rand_not_zero(fq_t rop, flint_rand_t state, const fq_ctx_t ctx) Generates a high quality non-zero random element of `\mathbf{F}_q`. Assignments and conversions -------------------------------------------------------------------------------- .. function:: void fq_set(fq_t rop, const fq_t op, const fq_ctx_t ctx) Sets ``rop`` to ``op``. .. function:: void fq_set_si(fq_t rop, const slong x, const fq_ctx_t ctx) Sets ``rop`` to ``x``, considered as an element of `\mathbf{F}_p`. .. function:: void fq_set_ui(fq_t rop, const ulong x, const fq_ctx_t ctx) Sets ``rop`` to ``x``, considered as an element of `\mathbf{F}_p`. .. function:: void fq_set_fmpz(fq_t rop, const fmpz_t x, const fq_ctx_t ctx) Sets ``rop`` to ``x``, considered as an element of `\mathbf{F}_p`. .. function:: void fq_swap(fq_t op1, fq_t op2, const fq_ctx_t ctx) Swaps the two elements ``op1`` and ``op2``. .. function:: void fq_zero(fq_t rop, const fq_ctx_t ctx) Sets ``rop`` to zero. .. function:: void fq_one(fq_t rop, const fq_ctx_t ctx) Sets ``rop`` to one, reduced in the given context. .. function:: void fq_gen(fq_t rop, const fq_ctx_t ctx) Sets ``rop`` to a generator for the finite field. There is no guarantee this is a multiplicative generator of the finite field. .. function:: void fq_get_fmpz_poly(fmpz_poly_t a, const fq_t b, const fq_ctx_t ctx) .. function:: void fq_get_fmpz_mod_poly(fmpz_mod_poly_t a, const fq_t b, const fq_ctx_t ctx) Set ``a`` to a representative of ``b`` in ``ctx``. The representatives are taken in `(\mathbb{Z}/p\mathbb{Z})[x]/h(x)` where `h(x)` is the defining polynomial in ``ctx``. .. function:: void fq_set_fmpz_poly(fq_t a, const fmpz_poly_t b, const fq_ctx_t ctx) .. function:: void fq_set_fmpz_mod_poly(fq_t a, const fmpz_mod_poly_t b, const fq_ctx_t ctx) Set ``a`` to the element in ``ctx`` with representative ``b``. The representatives are taken in `(\mathbb{Z}/p\mathbb{Z})[x]/h(x)` where `h(x)` is the defining polynomial in ``ctx``. .. function:: void fq_get_fmpz_mod_mat(fmpz_mod_mat_t col, const fq_t a, const fq_ctx_t ctx) Convert ``a`` to a column vector of length ``degree(ctx)``. .. function:: void fq_set_fmpz_mod_mat(fq_t a, const fmpz_mod_mat_t col, const fq_ctx_t ctx) Convert a column vector ``col`` of length ``degree(ctx)`` to an element of ``ctx``. Comparison -------------------------------------------------------------------------------- .. function:: int fq_is_zero(const fq_t op, const fq_ctx_t ctx) Returns whether ``op`` is equal to zero. .. function:: int fq_is_one(const fq_t op, const fq_ctx_t ctx) Returns whether ``op`` is equal to one. .. function:: int fq_equal(const fq_t op1, const fq_t op2, const fq_ctx_t ctx) Returns whether ``op1`` and ``op2`` are equal. .. function:: int fq_is_invertible(const fq_t op, const fq_ctx_t ctx) Returns whether ``op`` is an invertible element. .. function:: int fq_is_invertible_f(fq_t f, const fq_t op, const fq_ctx_t ctx) Returns whether ``op`` is an invertible element. If it is not, then ``f`` is set of a factor of the modulus. Special functions -------------------------------------------------------------------------------- .. function:: void _fq_trace(fmpz_t rop, const fmpz *op, slong len, const fq_ctx_t ctx) Sets ``rop`` to the trace of the non-zero element ``(op, len)`` in `\mathbf{F}_{q}`. .. function:: void fq_trace(fmpz_t rop, const fq_t op, const fq_ctx_t ctx) Sets ``rop`` to the trace of ``op``. For an element `a \in \mathbf{F}_q`, multiplication by `a` defines a `\mathbf{F}_p`-linear map on `\mathbf{F}_q`. We define the trace of `a` as the trace of this map. Equivalently, if `\Sigma` generates `\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)` then the trace of `a` is equal to `\sum_{i=0}^{d-1} \Sigma^i (a)`, where `d = \log_{p} q`. .. function:: void _fq_norm(fmpz_t rop, const fmpz *op, slong len, const fq_ctx_t ctx) Sets ``rop`` to the norm of the non-zero element ``(op, len)`` in `\mathbf{F}_{q}`. .. function:: void fq_norm(fmpz_t rop, const fq_t op, const fq_ctx_t ctx) Computes the norm of ``op``. For an element `a \in \mathbf{F}_q`, multiplication by `a` defines a `\mathbf{F}_p`-linear map on `\mathbf{F}_q`. We define the norm of `a` as the determinant of this map. Equivalently, if `\Sigma` generates `\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)` then the trace of `a` is equal to `\prod_{i=0}^{d-1} \Sigma^i (a)`, where `d = \text{dim}_{\mathbf{F}_p}(\mathbf{F}_q)`. Algorithm selection is automatic depending on the input. .. function:: void _fq_frobenius(fmpz *rop, const fmpz *op, slong len, slong e, const fq_ctx_t ctx) Sets ``(rop, 2d-1)`` to the image of ``(op, len)`` under the Frobenius operator raised to the e-th power, assuming that neither ``op`` nor ``e`` are zero. .. function:: void fq_frobenius(fq_t rop, const fq_t op, slong e, const fq_ctx_t ctx) Evaluates the homomorphism `\Sigma^e` at ``op``. Recall that `\mathbf{F}_q / \mathbf{F}_p` is Galois with Galois group `\langle \sigma \rangle`, which is also isomorphic to `\mathbf{Z}/d\mathbf{Z}`, where `\sigma \in \operatorname{Gal}(\mathbf{F}_q/\mathbf{F}_p)` is the Frobenius element `\sigma \colon x \mapsto x^p`. .. function:: int fq_multiplicative_order(fmpz_t ord, const fq_t op, const fq_ctx_t ctx) Computes the order of ``op`` as an element of the multiplicative group of ``ctx``. Returns 0 if ``op`` is 0, otherwise it returns 1 if ``op`` is a generator of the multiplicative group, and -1 if it is not. This function can also be used to check primitivity of a generator of a finite field whose defining polynomial is not primitive. .. function:: int fq_is_primitive(const fq_t op, const fq_ctx_t ctx) Returns whether ``op`` is primitive, i.e., whether it is a generator of the multiplicative group of ``ctx``. Bit packing -------------------------------------------------------------------------------- .. function:: void fq_bit_pack(fmpz_t f, const fq_t op, flint_bitcnt_t bit_size, const fq_ctx_t ctx) Packs ``op`` into bitfields of size ``bit_size``, writing the result to ``f``. .. function:: void fq_bit_unpack(fq_t rop, const fmpz_t f, flint_bitcnt_t bit_size, const fq_ctx_t ctx) Unpacks into ``rop`` the element with coefficients packed into fields of size ``bit_size`` as represented by the integer ``f``.