.. _fq-nmod-poly-factor: **fq_nmod_poly_factor.h** -- factorisation of univariate polynomials over finite fields (word-size characteristic) ================================================================================================================== Description. Types, macros and constants ------------------------------------------------------------------------------- .. type:: fq_nmod_poly_factor_struct .. type:: fq_nmod_poly_factor_t Description. Memory Management -------------------------------------------------------------------------------- .. function:: void fq_nmod_poly_factor_init(fq_nmod_poly_factor_t fac, const fq_nmod_ctx_t ctx) Initialises ``fac`` for use. An :type:`fq_nmod_poly_factor_t` represents a polynomial in factorised form as a product of polynomials with associated exponents. .. function:: void fq_nmod_poly_factor_clear(fq_nmod_poly_factor_t fac, const fq_nmod_ctx_t ctx) Frees all memory associated with ``fac``. .. function:: void fq_nmod_poly_factor_realloc(fq_nmod_poly_factor_t fac, slong alloc, const fq_nmod_ctx_t ctx) Reallocates the factor structure to provide space for precisely ``alloc`` factors. .. function:: void fq_nmod_poly_factor_fit_length(fq_nmod_poly_factor_t fac, slong len, const fq_nmod_ctx_t ctx) Ensures that the factor structure has space for at least ``len`` factors. This functions takes care of the case of repeated calls by always at least doubling the number of factors the structure can hold. Basic Operations -------------------------------------------------------------------------------- .. function:: void fq_nmod_poly_factor_set(fq_nmod_poly_factor_t res, const fq_nmod_poly_factor_t fac, const fq_nmod_ctx_t ctx) Sets ``res`` to the same factorisation as ``fac``. .. function:: void fq_nmod_poly_factor_print_pretty(const fq_nmod_poly_factor_t fac, const fq_nmod_ctx_t ctx) Pretty-prints the entries of ``fac`` to standard output. .. function:: void fq_nmod_poly_factor_print(const fq_nmod_poly_factor_t fac, const fq_nmod_ctx_t ctx) Prints the entries of ``fac`` to standard output. .. function:: void fq_nmod_poly_factor_insert(fq_nmod_poly_factor_t fac, const fq_nmod_poly_t poly, slong exp, const fq_nmod_ctx_t ctx) Inserts the factor ``poly`` with multiplicity ``exp`` into the factorisation ``fac``. If ``fac`` already contains ``poly``, then ``exp`` simply gets added to the exponent of the existing entry. .. function:: void fq_nmod_poly_factor_concat(fq_nmod_poly_factor_t res, const fq_nmod_poly_factor_t fac, const fq_nmod_ctx_t ctx) Concatenates two factorisations. This is equivalent to calling :func:`fq_nmod_poly_factor_insert` repeatedly with the individual factors of ``fac``. Does not support aliasing between ``res`` and ``fac``. .. function:: void fq_nmod_poly_factor_pow(fq_nmod_poly_factor_t fac, slong exp, const fq_nmod_ctx_t ctx) Raises ``fac`` to the power ``exp``. .. function:: ulong fq_nmod_poly_remove(fq_nmod_poly_t f, const fq_nmod_poly_t p, const fq_nmod_ctx_t ctx) Removes the highest possible power of ``p`` from ``f`` and returns the exponent. Irreducibility Testing -------------------------------------------------------------------------------- .. function:: int fq_nmod_poly_is_irreducible(const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx) Returns 1 if the polynomial ``f`` is irreducible, otherwise returns 0. .. function:: int fq_nmod_poly_is_irreducible_ddf(const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx) Returns 1 if the polynomial ``f`` is irreducible, otherwise returns 0. Uses fast distinct-degree factorisation. .. function:: int fq_nmod_poly_is_irreducible_ben_or(const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx) Returns 1 if the polynomial ``f`` is irreducible, otherwise returns 0. Uses Ben-Or's irreducibility test. .. function:: int _fq_nmod_poly_is_squarefree(const fq_nmod_struct * f, slong len, const fq_nmod_ctx_t ctx) Returns 1 if ``(f, len)`` is squarefree, and 0 otherwise. As a special case, the zero polynomial is not considered squarefree. There are no restrictions on the length. .. function:: int fq_nmod_poly_is_squarefree(const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx) Returns 1 if ``f`` is squarefree, and 0 otherwise. As a special case, the zero polynomial is not considered squarefree. Factorisation -------------------------------------------------------------------------------- .. function:: int fq_nmod_poly_factor_equal_deg_prob(fq_nmod_poly_t factor, flint_rand_t state, const fq_nmod_poly_t pol, slong d, const fq_nmod_ctx_t ctx) Probabilistic equal degree factorisation of ``pol`` into irreducible factors of degree ``d``. If it passes, a factor is placed in factor and 1 is returned, otherwise 0 is returned and the value of factor is undetermined. Requires that ``pol`` be monic, non-constant and squarefree. .. function:: void fq_nmod_poly_factor_equal_deg(fq_nmod_poly_factor_t factors, const fq_nmod_poly_t pol, slong d, const fq_nmod_ctx_t ctx) Assuming ``pol`` is a product of irreducible factors all of degree ``d``, finds all those factors and places them in factors. Requires that ``pol`` be monic, non-constant and squarefree. .. function:: void fq_nmod_poly_factor_split_single(fq_nmod_poly_t linfactor, const fq_nmod_poly_t input, const fq_nmod_ctx_t ctx) Assuming ``input`` is a product of factors all of degree 1, finds a single linear factor of ``input`` and places it in ``linfactor``. Requires that ``input`` be monic and non-constant. .. function:: void fq_nmod_poly_factor_distinct_deg(fq_nmod_poly_factor_t res, const fq_nmod_poly_t poly, slong * const *degs, const fq_nmod_ctx_t ctx) Factorises a monic non-constant squarefree polynomial ``poly`` of degree n into factors `f[d]` such that for `1 \leq d \leq n` `f[d]` is the product of the monic irreducible factors of ``poly`` of degree `d`. Factors are stored in ``res``, associated powers of irreducible polynomials are stored in ``degs`` in the same order as factors. Requires that ``degs`` have enough space for irreducible polynomials' powers (maximum space required is `n * sizeof(slong)`). .. function:: void fq_nmod_poly_factor_squarefree(fq_nmod_poly_factor_t res, const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx) Sets ``res`` to a squarefree factorization of ``f``. .. function:: void fq_nmod_poly_factor(fq_nmod_poly_factor_t res, fq_nmod_t lead, const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx) Factorises a non-constant polynomial ``f`` into monic irreducible factors choosing the best algorithm for given modulo and degree. The output ``lead`` is set to the leading coefficient of `f` upon return. Choice of algorithm is based on heuristic measurements. .. function:: void fq_nmod_poly_factor_cantor_zassenhaus(fq_nmod_poly_factor_t res, const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx) Factorises a non-constant polynomial ``f`` into monic irreducible factors using the Cantor-Zassenhaus algorithm. .. function:: void fq_nmod_poly_factor_kaltofen_shoup(fq_nmod_poly_factor_t res, const fq_nmod_poly_t poly, const fq_nmod_ctx_t ctx) Factorises a non-constant polynomial ``f`` into monic irreducible factors using the fast version of Cantor-Zassenhaus algorithm proposed by Kaltofen and Shoup (1998). More precisely this algorithm uses a “baby step/giant step” strategy for the distinct-degree factorization step. .. function:: void fq_nmod_poly_factor_berlekamp(fq_nmod_poly_factor_t factors, const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx) Factorises a non-constant polynomial ``f`` into monic irreducible factors using the Berlekamp algorithm. .. function:: void fq_nmod_poly_factor_with_berlekamp(fq_nmod_poly_factor_t res, fq_nmod_t leading_coeff, const fq_nmod_poly_t f, const fq_nmod_ctx_t) Factorises a general polynomial ``f`` into monic irreducible factors and sets ``leading_coeff`` to the leading coefficient of ``f``, or 0 if ``f`` is the zero polynomial. This function first checks for small special cases, deflates ``f`` if it is of the form `p(x^m)` for some `m > 1`, then performs a square-free factorisation, and finally runs Berlekamp on all the individual square-free factors. .. function:: void fq_nmod_poly_factor_with_cantor_zassenhaus(fq_nmod_poly_factor_t res, fq_nmod_t leading_coeff, const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx) Factorises a general polynomial ``f`` into monic irreducible factors and sets ``leading_coeff`` to the leading coefficient of ``f``, or 0 if ``f`` is the zero polynomial. This function first checks for small special cases, deflates ``f`` if it is of the form `p(x^m)` for some `m > 1`, then performs a square-free factorisation, and finally runs Cantor-Zassenhaus on all the individual square-free factors. .. function:: void fq_nmod_poly_factor_with_kaltofen_shoup(fq_nmod_poly_factor_t res, fq_nmod_t leading_coeff, const fq_nmod_poly_t f, const fq_nmod_ctx_t ctx) Factorises a general polynomial ``f`` into monic irreducible factors and sets ``leading_coeff`` to the leading coefficient of ``f``, or 0 if ``f`` is the zero polynomial. This function first checks for small special cases, deflates ``f`` if it is of the form `p(x^m)` for some `m > 1`, then performs a square-free factorisation, and finally runs Kaltofen-Shoup on all the individual square-free factors. .. function:: void fq_nmod_poly_iterated_frobenius_preinv(fq_nmod_poly_t *rop, slong n, const fq_nmod_poly_t v, const fq_nmod_poly_t vinv, const fq_nmod_ctx_t ctx) Sets ``rop[i]`` to be `x^{q^i} mod v` for `0 <= i < n`. It is required that ``vinv`` is the inverse of the reverse of ``v`` mod ``x^lenv``. Root Finding -------------------------------------------------------------------------------- .. function:: void fq_nmod_poly_roots(fq_nmod_poly_factor_t r, const fq_nmod_poly_t f, int with_multiplicity, const fq_nmod_ctx_t ctx) Fill `r` with factors of the form `x - r_i` where the `r_i` are the distinct roots of a nonzero `f` in `F_q`. If `with_multiplicity` is zero, the exponent `e_i` of the factor `x - r_i` is `1`. Otherwise, it is the largest `e_i` such that `(x-r_i)^e_i` divides `f`. This function throws if `f` is zero, but is otherwise always successful.