.. _mpf-mat: **mpf_mat.h** -- matrices of MPF floating-point numbers =============================================================================== Memory management -------------------------------------------------------------------------------- .. function:: void mpf_mat_init(mpf_mat_t mat, slong rows, slong cols, flint_bitcnt_t prec) Initialises a matrix with the given number of rows and columns and the given precision for use. The precision is at least the precision of the entries. .. function:: void mpf_mat_clear(mpf_mat_t mat) Clears the given matrix. Basic assignment and manipulation -------------------------------------------------------------------------------- .. function:: void mpf_mat_set(mpf_mat_t mat1, const mpf_mat_t mat2) Sets ``mat1`` to a copy of ``mat2``. The dimensions of ``mat1`` and ``mat2`` must be the same. .. function:: void mpf_mat_swap(mpf_mat_t mat1, mpf_mat_t mat2) Swaps two matrices. The dimensions of ``mat1`` and ``mat2`` are allowed to be different. .. function:: void mpf_mat_swap_entrywise(mpf_mat_t mat1, mpf_mat_t mat2) Swaps two matrices by swapping the individual entries rather than swapping the contents of the structs. .. function:: mpf * mpf_mat_entry(const mpf_mat_t * mat, slong i, slong j) Returns a reference to the entry of ``mat`` at row `i` and column `j`. Both `i` and `j` must not exceed the dimensions of the matrix. The return value can be used to either retrieve or set the given entry. .. function:: void mpf_mat_zero(mpf_mat_t mat) Sets all entries of ``mat`` to 0. .. function:: void mpf_mat_one(mpf_mat_t mat) Sets ``mat`` to the unit matrix, having ones on the main diagonal and zeroes elsewhere. If ``mat`` is nonsquare, it is set to the truncation of a unit matrix. Random matrix generation -------------------------------------------------------------------------------- .. function:: void mpf_mat_randtest(mpf_mat_t mat, flint_ranmpf_t state, flint_bitcnt_t bits) Sets the entries of ``mat`` to random numbers in the interval `[0, 1)` with ``bits`` significant bits in the mantissa or less if their precision is smaller. Input and output -------------------------------------------------------------------------------- .. function:: void mpf_mat_print(const mpf_mat_t mat) Prints the given matrix to the stream ``stdout``. Comparison -------------------------------------------------------------------------------- .. function:: int mpf_mat_equal(const mpf_mat_t mat1, const mpf_mat_t mat2) Returns a non-zero value if ``mat1`` and ``mat2`` have the same dimensions and entries, and zero otherwise. .. function:: int mpf_mat_approx_equal(const mpf_mat_t mat1, const mpf_mat_t mat2, flint_bitcnt_t bits) Returns a non-zero value if ``mat1`` and ``mat2`` have the same dimensions and the first ``bits`` bits of their entries are equal, and zero otherwise. .. function:: int mpf_mat_is_zero(const mpf_mat_t mat) Returns a non-zero value if all entries ``mat`` are zero, and otherwise returns zero. .. function:: int mpf_mat_is_empty(const mpf_mat_t mat) Returns a non-zero value if the number of rows or the number of columns in ``mat`` is zero, and otherwise returns zero. .. function:: int mpf_mat_is_square(const mpf_mat_t mat) Returns a non-zero value if the number of rows is equal to the number of columns in ``mat``, and otherwise returns zero. Matrix multiplication -------------------------------------------------------------------------------- .. function:: void mpf_mat_mul(mpf_mat_t C, const mpf_mat_t A, const mpf_mat_t B) Sets ``C`` to the matrix product `C = A B`. The matrices must have compatible dimensions for matrix multiplication (an exception is raised otherwise). Aliasing is allowed. Gram-Schmidt Orthogonalisation and QR Decomposition -------------------------------------------------------------------------------- .. function:: void mpf_mat_gso(mpf_mat_t B, const mpf_mat_t A) Takes a subset of `R^m` `S = {a_1, a_2, \ldots ,a_n}` (as the columns of a `m x n` matrix ``A``) and generates an orthonormal set `S' = {b_1, b_2, \ldots ,b_n}` (as the columns of the `m x n` matrix ``B``) that spans the same subspace of `R^m` as `S`. This uses an algorithm of Schwarz-Rutishauser. See pp. 9 of https://people.inf.ethz.ch/gander/papers/qrneu.pdf .. function:: void mpf_mat_qr(mpf_mat_t Q, mpf_mat_t R, const mpf_mat_t A) Computes the `QR` decomposition of a matrix ``A`` using the Gram-Schmidt process. (Sets ``Q`` and ``R`` such that `A = QR` where ``R`` is an upper triangular matrix and ``Q`` is an orthogonal matrix.) This uses an algorithm of Schwarz-Rutishauser. See pp. 9 of https://people.inf.ethz.ch/gander/papers/qrneu.pdf