References ------------ .. [AbbottBronsteinMulders1999] Fast deterministic computation of determinants of dense matrices ACM International Symposium on Symbolic and Algebraic Computation 1999 .. [Apostol1997] Apostol, Tom : Modular functions and Dirichlet series in number theory, Springer (1997) .. [ArnoldMonagan2011] Arnold, Andrew and Monagan, Michael : Calculating cyclotomic polynomials, Mathematics of Computation 80:276 (2011) 2359--2379 .. [BaiWag1980] Robert Baillie; Samuel S. Wagstaff, Jr. (October 1980). "Lucas Pseudoprimes". Mathematics of Computation. 35 (152): 1391–1417. .. [BerTas2010] D. Berend and T. Tassa : Improved bounds on Bell numbers and on moments of sums of random variables, Probability and Mathematical Statistics vol. 30 (2010) 185--205 .. [Bodrato2010] Bodrato, Marco A Strassen-like Matrix Multiplication Suited for Squaring and Higher Power Computation. Proceedings of the ISSAC 2010 München, Germany, 25-28 July, 2010 .. [BrentKung1978] Brent, R. P. and Kung, H. T. : Fast Algorithms for Manipulating Formal Power Series, J. ACM 25:4 (1978) 581--595 .. [BuhlerCrandallSompolski1992] Buhler, J.P. and Crandall, R.E. and Sompolski, R.W. : Irregular primes to one million : Math. Comp. 59:2000 (1992) 717--722 .. [Chen2003] Zhuo Chen and John Greene : Some Comments on {Baillie--PSW} Pseudoprimes, The Fibonacci Quaterly 41:4 (2003) 334--344 .. [Coh1996] Cohen, Henri : A course in computational algebraic number theory, Springer, 1996 .. [Col1971] Collins, George E. : The Calculation of Multivariate Polynomial Resultants, SYMSAC '71, ACM 1971 212--222 .. [CraPom2005] Richard Crandall and Carl Pomerance: Prime numbers: a computational perspective. 2005. .. [DelegliseNicolasZimmermann2009] Deleglise, Marc and Niclas, Jean-Louis and Zimmermann, Paul : Landau's function for one million billions, J. Th\'eor. Nombres Bordeaux 20:3 (2009) 625--671 .. [DomKanTro1987] Domich, P. D. and Kannan, R. and Trotter, L. E. Jr. : Hermite Normal Form Computation Using Modulo Determinant Arithmetic, Math. Operations Res. (12) 1987 50-59 .. [Dus1999] P. Dusart, "The kth prime is greater than k(ln k+ln ln k-1) for k> 2," Math. Comp., 68:225 (January 1999) 411--415. .. [FieHof2014] Fieker C. and Hofmann T.: "Computing in quotients of rings of integers" LMS Journal of Computation and Mathematics, 17(A), 349-365 .. [GraMol2010] Torbjorn Granlund and Niels Moller : Improved Division by Invariant Integers https://gmplib.org/~tege/division-paper.pdf .. [GowWag2008] Jason Gower and Sam Wagstaff : "Square form factoring" Math. Comp. 77, 2008, pp 551-588, https://doi.org/10.1090/S0025-5718-07-02010-8 .. [HanZim2004] Guillaume Hanrot and Paul Zimmermann : Newton Iteration Revisited (2004) https://www.loria.fr/~zimmerma/papers/fastnewton.ps.gz .. [Har2012] Hart, William B.. (2012) A one line factoring algorithm. Journal of the Australian Mathematical Society, Volume 92 (Number 1). pp. 61-69. .. [Iliopoulos1989] Iliopoulos, C. S., Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix : SIAM J. Computation 18:4 (1989) 658 .. [KanBac1979] Kannan, R. and Bachem, A. : Polynomial algorithms for computing and the Smith and Hermite normal forms of an integer matrix, SIAM J. Computation vol. 9 (1979) 499--507 .. [Kahan1991] Kahan, William: Computing a Real Cube Root. https://csclub.uwaterloo.ca/~pbarfuss/qbrt.pdf .. [LukPatWil1996] R. F. Lukes and C. D. Patterson and H. C. Williams "Some results on pseudosquares" Math. Comp. 1996, no. 65, 361--372 .. [MasRob1996] J. Massias and G. Robin, "Bornes effectives pour certaines fonctions concernant les nombres premiers," J. Theorie Nombres Bordeaux, 8 (1996) 215-242. .. [NakTurWil1997] Nakos, George and Turner, Peter and Williams, Robert : Fraction-free algorithms for linear and polynomial equations, ACM SIGSAM Bull. 31 (1997) 3 11--19 .. [Mul2000] Thom Mulders : On Short Multiplications and Divisions, AAECC vol. 11 (2000) 69--88 .. [Paterson1973] Michael S. Paterson and Larry J. Stockmeyer : On the number of nonscalar multiplications necessary to evaluate polynomials, SIAM Journal on Computing (1973) .. [PernetStein2010] Pernet, C. and Stein, W. : Fast computation of Hermite normal forms of random integer matrices ,J. Number Theory 130:17 (2010) 1675--1683 .. [Rademacher1937] Rademacher, Hans : On the partition function `p(n)` Proc. London Math. Soc vol. 43 (1937) 241--254 .. [RosSch1962] Rosser, J. Barkley; Schoenfeld, Lowell: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), no. 1, 64--94. .. [SorWeb2016] Sorenson, Jonathan and Webster, Jonathan : Strong pseudoprimes to twelve prime bases. Math. Comp. 86 (2017), 985-1003, https://doi.org/10.1090/mcom/3134 .. [Stehle2010] Stehl\'e, Damien : Floating-Point LLL: Theoretical and Practical Aspects, in Nguyen, Phong Q. and Vall\'ee, Brigitte : The LLL Algorithm: Survey and Applications (2010) 179--213 .. [Stein2007] Stein, William A.: Modular forms, a computational approach. American Mathematical Society. 2007 .. [StoMul1998] Storjohann, Arne and Mulders, Thom : Fast algorithms for linear algebra modulo :math:`N` : Algorithms---{ESA} '98 (Venice), Lecture Notes in Comput. Sci. 1461 139--150 .. [ThullYap1990] Thull, K. and Yap, C. : A Unified Approach to {HGCD} Algorithms for Polynomials and Integers, (1990) .. [Villard2007] Villard, Gilles : Certification of the QR Factor R and of Lattice Basis Reducedness, In proceedings of ACM International Symposium on Symbolic and Algebraic Computation (2007) 361--368 ACM Press. .. [WaktinsZeitlin1993] Watkins, W. and Zeitlin, J. : The minimal polynomial of $\cos(2\pi/n)$ The American Mathematical Monthly 100:5 (1993) 471--474 .. [Whiteman1956] Whiteman, A. L. : A sum connected with the series for the partition function, Pacific Journal of Mathematics 6:1 (1956) 159--176