/* Copyright (C) 2011 Fredrik Johansson This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ /* Demo FLINT program for balanced multimodular reduction and reconstruction using the Chinese Remainder Theorem. */ #include #include #include "flint.h" #include "fmpz.h" #include "ulong_extras.h" int main(int argc, char* argv[]) { slong i; fmpz_t x, y; /* Data needed by multi CRT functions */ fmpz_comb_t comb; fmpz_comb_temp_t comb_temp; mp_limb_t * primes; mp_limb_t * residues; slong num_primes; if (argc != 3) { flint_printf("Syntax: crt \n"); return EXIT_FAILURE; } num_primes = atoi(argv[2]); if (num_primes < 1) { flint_printf("Requires num_primes >= 1\n"); return EXIT_FAILURE; } fmpz_init(x); fmpz_init(y); fmpz_set_str(x, argv[1], 10); primes = flint_malloc(num_primes * sizeof(mp_limb_t)); residues = flint_malloc(num_primes * sizeof(mp_limb_t)); primes[0] = 2; for (i = 1; i < num_primes; i++) primes[i] = n_nextprime(primes[i-1], 0); fmpz_comb_init(comb, primes, num_primes); fmpz_comb_temp_init(comb_temp, comb); /* Reduce modulo all primes */ fmpz_multi_mod_ui(residues, x, comb, comb_temp); /* Reconstruct */ fmpz_multi_CRT_ui(y, residues, comb, comb_temp, 1); for (i = 0; i < num_primes; i++) flint_printf("residue mod %wu = %wu\n", primes[i], residues[i]); flint_printf("reconstruction = "); fmpz_print(y); flint_printf("\n"); fmpz_clear(x); fmpz_clear(y); fmpz_comb_temp_clear(comb_temp); fmpz_comb_clear(comb); flint_free(residues); flint_free(primes); return EXIT_SUCCESS; }