/*
Copyright (C) 2013 Tom Bachmann
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#ifndef CXX_EXPRESSION_H
#define CXX_EXPRESSION_H
// TODO
// * static asserts
#include
#include
#include
#include "evaluation_tools.h"
#include "expression_traits.h"
#include "mp.h"
#include "rules.h"
#include "traits.h"
#include "tuple.h"
namespace flint {
namespace detail {
// Helper traits used by the "expression" class, in particular the evaluate()
// method. This is the general (i.e. non-immediate) case,
// which requires actual work.
template
struct evaluation_traits
{
typedef typename Expr::derived_t derived_t;
typedef typename mp::find_evaluation<
Operation, Data, false>::type rule_t;
typedef typename mp::find_evaluation<
Operation, Data, true>::type temp_rule_t;
typedef typename rule_t::return_t evaluation_return_t;
typedef evaluation_return_t evaluated_t;
static evaluation_return_t evaluate(const derived_t& from)
{
evaluated_t res =
rules::instantiate_temporaries::get(from);
evaluate_into_fresh(res, from);
return res;
}
template
static void evaluate_into(T& to, const derived_t& from)
{
typedef mp::back_tuple back_t;
typename back_t::type temps_backing =
mp::htuples::fill(
tools::temporaries_filler(from));
typename rule_t::temporaries_t temps;
back_t::init(temps, temps_backing, 0);
rule_t::doit(from._data(), temps, &to);
}
static void evaluate_into_fresh(evaluation_return_t& to, const derived_t& from)
{
typedef mp::back_tuple<
typename temp_rule_t::temporaries_t,
evaluation_return_t
> back_t;
typename back_t::type temps_backing =
mp::htuples::fill(
tools::temporaries_filler(from));
typename temp_rule_t::temporaries_t temps;
back_t::init(temps, temps_backing, &to);
temp_rule_t::doit(from._data(), temps, &to);
}
};
// This is the special case of an immediate argument, where "evaluation" is
// at most assignment.
template
struct evaluation_traits
{
typedef typename Expr::derived_t derived_t;
typedef typename Expr::derived_t evaluated_t;
typedef evaluated_t& evaluation_return_t;
static evaluated_t& evaluate(derived_t& d) {return d;}
static const evaluated_t& evaluate(const derived_t& d) {return d;}
template
static void evaluate_into(T& to, const derived_t& from)
{
rules::assignment::doit(to, from);
}
static void evaluate_into_fresh(derived_t& to, const derived_t& from)
{
evaluate_into(to, from);
}
};
} // detail
// The main expression template class.
//
// The argument Derived must have the following form:
// struct derived
// {
// template
// struct type
// {
// typedef XYZ result;
// };
// };
// See derived_wrapper below for a common example.
//
// Note that, while Data does not have to be default constructible,
// it *does* need to be copy-constructible, and have a working destructor.
template
class expression
{
private:
Data data;
protected:
explicit expression(const Data& d) : data(d) {}
public:
// internal -- see is_expression implementation.
typedef void IS_EXPRESSION_MARKER;
typedef detail::evaluation_traits ev_traits_t;
typedef typename Derived::template type::result derived_t;
typedef typename ev_traits_t::evaluated_t evaluated_t;
typedef typename ev_traits_t::evaluation_return_t evaluation_return_t;
typedef Data data_t;
typedef Operation operation_t;
private:
derived_t& downcast() {return *static_cast(this);}
const derived_t& downcast() const
{
return *static_cast(this);
}
// Some helpers for initialization, since it is not possible to
// conditionally enable constructors in C++98
template
static data_t get_data(const T& t,
typename mp::disable_if >::type* = 0)
{
return data_t(t);
}
template
static data_t get_data(T& t,
typename mp::disable_if >::type* = 0)
{
return data_t(t);
}
template
static data_t get_data(const T& t,
typename mp::enable_if >::type* = 0,
typename mp::disable_if<
mp::equal_types >::type* = 0)
{
return data_t(t.evaluate());
}
template
static data_t get_data(const T& t,
typename mp::enable_if >::type* = 0,
typename mp::enable_if<
mp::equal_types >::type* = 0)
{
return data_t(t.evaluate()._data());
}
// Invoke the data copy constructor when appropriate
static data_t get_data(const derived_t& o)
{
return data_t(o._data());
}
static data_t get_data(derived_t& o)
{
return data_t(o._data());
}
// Having the empty constructor here delays its instantiation, and allows
// compiling even if data is *not* default constructible.
static data_t get_data() {return data_t();}
public:
// forwarded constructors
template
explicit expression(const T& t)
: data(get_data(t)) {}
template
explicit expression(T& t)
: data(get_data(t)) {}
template
expression(const T& t, const U& u)
: data(t, u) {}
template
expression(T& t, const U& u)
: data(t, u) {}
template
expression(const T& t, const U& u, const V& v)
: data(t, u, v) {}
template
expression(T& t, const U& u, const V& v)
: data(t, u, v) {}
template
expression(const T& t, const U& u, const V& v, const W& w)
: data(t, u, v, w) {}
template
expression(T& t, const U& u, const V& v, const W& w)
: data(t, u, v, w) {}
expression() : data(get_data()) {}
expression& operator=(const expression& o)
{
this->set(o.downcast());
return *this;
}
// See rules::instantiate_temporaries for explanation.
evaluated_t create_temporary() const
{
return evaluated_t();
}
Data& _data() {return data;}
const Data& _data() const {return data;}
void print(std::ostream& o) const
{
tools::print_using_str::doit(evaluate(), o);
}
std::string to_string(int base = 10) const
{
return rules::to_string::get(evaluate(), base);
}
template
T to() const
{
return rules::conversion::get(evaluate());
}
int print(FILE* f = stdout) const
{
return rules::cprint::doit(f, evaluate());
}
int print_pretty(FILE* f = stdout) const
{
return rules::print_pretty::doit(f, evaluate());
}
template
int print_pretty(const T& extra, FILE* f = stdout) const
{
return rules::print_pretty::doit(f, evaluate(), extra);
}
int read(FILE* f = stdin)
{
return rules::read::doit(f, downcast());
}
typename traits::make_const::type evaluate() const
{
return ev_traits_t::evaluate(downcast());
}
evaluation_return_t evaluate() {return ev_traits_t::evaluate(downcast());}
template
void set(const T& t,
typename mp::enable_if >::type* = 0,
typename mp::enable_if >::type* = 0)
{
T::ev_traits_t::evaluate_into(downcast(), t);
}
template
void set(const T& t,
typename mp::enable_if >::type* = 0,
typename mp::disable_if >::type* = 0)
{
rules::assignment::doit(
downcast(), t.evaluate());
}
template
void set(const T& t,
typename mp::disable_if >::type* = 0)
{
rules::assignment::doit(downcast(), t);
}
template
bool equals(const T& t,
typename mp::enable_if >::type* = 0) const
{
return equals(t.evaluate());
}
template
bool equals(const T& t,
typename mp::disable_if >::type* = 0) const
{
return tools::equals_using_cmp::get(evaluate(), t);
}
template
struct make_helper
{
typedef typename Derived::template type::result type;
static type make(const NData& ndata)
{
return type(ndata);
}
};
};
// If your expression template is of the form
// template
// class my_expression ...
// then derived_wrapper is a valid argument for Derived in
// the expression class above.
template class Derived>
struct derived_wrapper
{
template
struct type
{
typedef Derived result;
};
};
// If your expression template is of the form
// template
// class my_expression2 ...
// where Extra is some extra information which should be passed on unchanged,
// then derived_wrapper2 is a valid argument for Derived
// in the expression class above.
template class Derived, class Extra>
struct derived_wrapper2
{
template
struct type
{
typedef Derived result;
};
};
// operators
namespace detail {
// These traits determine how arguments of an expression template are stored.
// E.g. (e1 + e2) yields a new expression template with a two-argument tuple
// as Data. If e1 is an immediate, then we want to (usually) store it by
// reference, to avoid copies. If not, we can just store by value (since
// copying e1 just copies the references anyway) and avoid indirection.
// (Similarly for e2.)
template
struct storage_traits
: mp::if_<
traits::is_immediate,
typename traits::forwarding::type,
Expr
> { };
// See tuple.h.
template<>
struct storage_traits {typedef detail::UNUSED type;};
template
struct nary_op_helper_step2
{
typedef typename ev_t::return_t Expr;
typedef typename Expr::template make_helper make_helper;
typedef typename make_helper::type return_t;
};
template
struct nary_op_helper_step2
{
struct return_t { };
struct make_helper { };
};
// Helper to determine the return type of an expression, where Data is already
// the correct tuple type.
// The step1/step2 splitting above is necessary to avoid compiler errors in
// case there is not actually any rule.
template
struct nary_op_helper
{
typedef typename mp::find_evaluation::type ev_t;
typedef nary_op_helper_step2 nohs2;
typedef typename nohs2::return_t return_t;
typedef typename nohs2::make_helper make_helper;
typedef traits::is_implemented cond;
typedef mp::enable_if enable;
};
template
struct nary_op_helper_maker
: nary_op_helper
{
typedef Maker maker;
};
#define FLINTXX_NARY_OP_HELPER_MACRO(arg) typename storage_traits< arg >::type
// nary_op_helper invokes nary_op_helper with the correct
// tuple type as argument.
template
struct nary_op_helper2
: nary_op_helper_maker >
{
typedef nary_op_helper2 noh2;
static typename noh2::return_t make(FLINTXX_MAKE_TUPLE_FUNC_ARGS)
{
return noh2::make_helper::make(noh2::maker::make(
FLINTXX_MAKE_TUPLE_FUNC_ARG_NAMES));
}
};
// Special casing for binary operators.
template
struct binary_op_helper
: nary_op_helper2
{ };
// Special casing for unary operations.
template
struct unary_op_helper : nary_op_helper2 { };
// For unary member operators, determining the return type the normal way can
// lead to cyclic dependencies. See FLINTXX_DEFINE_MEMBER_UNOP_RTYPE.
template
struct unary_op_helper_with_rettype
{
typedef mp::make_tuple::type> maker;
typedef typename Ret::template make_helper<
Op, typename maker::type>::type return_t;
};
// Common helper for implementing comparison operators.
template
struct order_op_helper
{
typedef typename tools::evaluation_helper::type ev1_t;
typedef typename tools::evaluation_helper::type ev2_t;
typedef tools::symmetric_cmp scmp;
typedef mp::enable_if<
mp::and_<
traits::is_implemented,
mp::or_<
traits::is_expression,
traits::is_expression
>
>,
bool> enable;
static int get(const Expr1& e1, const Expr2& e2)
{
return scmp::get(tools::evaluation_helper::get(e1),
tools::evaluation_helper::get(e2));
}
};
} // detail
template
inline typename mp::enable_if, std::ostream&>::type
operator<<(std::ostream& o, const Expr& e)
{
e.print(o);
return o;
}
template
inline typename mp::enable_if, bool>::type
operator==(const Expr1& e1, const Expr2& e2)
{
return e1.equals(e2);
}
template
inline typename mp::enable_if >,
traits::is_expression >,
bool>::type
operator==(const Expr1& e1, const Expr2& e2)
{
return e2.equals(e1);
}
template
inline typename mp::enable_if,
traits::is_expression >,
bool>::type
operator!=(const Expr1& e1, const Expr2& e2)
{
return !(e1 == e2);
}
template
inline typename detail::order_op_helper::enable::type
operator<(const Expr1& e1, const Expr2& e2)
{
return detail::order_op_helper::get(e1, e2) < 0;
}
template
inline typename detail::order_op_helper::enable::type
operator<=(const Expr1& e1, const Expr2& e2)
{
return detail::order_op_helper::get(e1, e2) <= 0;
}
template
inline typename detail::order_op_helper::enable::type
operator>(const Expr1& e1, const Expr2& e2)
{
return detail::order_op_helper::get(e1, e2) > 0;
}
template
inline typename detail::order_op_helper::enable::type
operator>=(const Expr1& e1, const Expr2& e2)
{
return detail::order_op_helper::get(e1, e2) >= 0;
}
template
inline typename detail::binary_op_helper<
Expr1, operations::plus, Expr2>::enable::type
operator+(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper::make(e1, e2);
}
template
inline typename detail::binary_op_helper<
Expr1, operations::minus, Expr2>::enable::type
operator-(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper::make(e1, e2);
}
template
inline typename detail::binary_op_helper<
Expr1, operations::times, Expr2>::enable::type
operator*(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper::make(e1, e2);
}
template
inline typename detail::binary_op_helper<
Expr1, operations::divided_by, Expr2>::enable::type
operator/(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper::make(e1, e2);
}
template
inline typename detail::binary_op_helper<
Expr1, operations::modulo, Expr2>::enable::type
operator%(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper::make(e1, e2);
}
template
inline typename detail::binary_op_helper<
Expr1, operations::binary_and, Expr2>::enable::type
operator&(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper::make(e1, e2);
}
template
inline typename detail::binary_op_helper<
Expr1, operations::binary_or, Expr2>::enable::type
operator|(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper::make(e1, e2);
}
template
inline typename detail::binary_op_helper<
Expr1, operations::binary_xor, Expr2>::enable::type
operator^(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper::make(e1, e2);
}
template
inline typename detail::binary_op_helper<
Expr1, operations::shift, Expr2>::enable::type
operator<<(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper::make(e1, e2);
}
template
inline typename detail::binary_op_helper<
Expr1, operations::shift, Expr2>::enable::type
operator>>(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper::make(e1, -e2);
}
template
inline typename detail::unary_op_helper::enable::type
operator-(const Expr& e)
{
return detail::unary_op_helper::make(e);
}
template
inline typename detail::unary_op_helper::enable::type
operator~(const Expr& e)
{
return detail::unary_op_helper::make(e);
}
template
inline typename mp::enable_if, Expr1&>::type
operator+=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 + e2);
return e1;
}
template
inline typename mp::enable_if, Expr1&>::type
operator-=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 - e2);
return e1;
}
template
inline typename mp::enable_if, Expr1&>::type
operator*=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 * e2);
return e1;
}
template
inline typename mp::enable_if, Expr1&>::type
operator/=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 / e2);
return e1;
}
template
inline typename mp::enable_if, Expr1&>::type
operator%=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 % e2);
return e1;
}
template
inline typename mp::enable_if, Expr1&>::type
operator|=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 | e2);
return e1;
}
template
inline typename mp::enable_if, Expr1&>::type
operator&=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 & e2);
return e1;
}
template
inline typename mp::enable_if, Expr1&>::type
operator^=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 ^ e2);
return e1;
}
// c-style IO
template
typename mp::enable_if >, int>::type
print(const T& t)
{
return t.print();
}
template
typename mp::enable_if >, int>::type
print(FILE* f, const T& t)
{
return t.print(f);
}
template
typename mp::enable_if >, int>::type
print_pretty(const T& t, const U& extra)
{
return t.print_pretty(extra);
}
template
typename mp::enable_if >, int>::type
print_pretty(FILE* f, const T& t, const U& extra)
{
return t.print_pretty(extra, f);
}
template
typename mp::enable_if >, int>::type
print_pretty(const T& t)
{
return t.print_pretty();
}
template
typename mp::enable_if >, int>::type
print_pretty(FILE* f, const T& t)
{
return t.print_pretty(f);
}
template
typename mp::enable_if >, int>::type
read(T& t)
{
return t.read();
}
template
typename mp::enable_if >, int>::type
read(FILE* f, T& t)
{
return t.read(f);
}
// TODO move to std?
template
inline typename mp::enable_if > >::type swap(Expr1& e1, Expr2& e2)
{
rules::swap::doit(e1, e2);
}
}
// TODO remove this?
#include "default_rules.h"
////////////////////////////////////////////////////////////////////////
// HELPER MACROS
////////////////////////////////////////////////////////////////////////
// To be called in any namespace
// Make the binary operation "name" available in current namespace
#define FLINT_DEFINE_BINOP_HERE(name) \
template \
inline typename ::flint::detail::binary_op_helper<\
T1, ::flint::operations::name##_op, T2>::enable::type \
name(const T1& t1, const T2& t2) \
{ \
return ::flint::detail::binary_op_helper< \
T1, ::flint::operations::name##_op, T2>::make(t1, t2); \
}
// Make the unary operation "name" available in current namespace
#define FLINT_DEFINE_UNOP_HERE(name) \
template \
inline typename ::flint::detail::unary_op_helper<\
::flint::operations::name##_op, T1>::enable::type \
name(const T1& t1) \
{ \
return ::flint::detail::unary_op_helper< ::flint::operations::name##_op, T1>::make(t1); \
}
// Make the threeary operation "name" available in current namespace
#define FLINT_DEFINE_THREEARY_HERE(name) \
template \
inline typename ::flint::detail::nary_op_helper2<\
::flint::operations::name##_op, T1, T2, T3>::enable::type \
name(const T1& t1, const T2& t2, const T3& t3) \
{ \
return ::flint::detail::nary_op_helper2< \
::flint::operations::name##_op, T1, T2, T3>::make(t1, t2, t3); \
}
// Make the threeary operation "name" available in current namespace,
// but with only two arguments, the second of which is of type type1 and
// defaults to val1, and the third argument always (implicitly) of type type2
// and value val2.
// The suggested usage of this macro is to first call FLINT_DEFINE_THREEARY_HERE,
// and then call FLINT_DEFINE_THREEARY_HERE_2DEFAULT. The effect will be an
// operation which can be invoked with 1, 2 or 3 arguments.
#define FLINT_DEFINE_THREEARY_HERE_2DEFAULT(name, type1, val1, type2, val2) \
template \
inline typename ::flint::detail::nary_op_helper2<\
::flint::operations::name##_op, T1, type1, type2 >::enable::type \
name(const T1& t1, type1 t2 = val1) \
{ \
return ::flint::detail::nary_op_helper2< \
::flint::operations::name##_op, T1, type1, type2>::make(t1, t2, val2); \
}
// Make the fourary operation "name" available in current namespace
#define FLINT_DEFINE_FOURARY_HERE(name) \
template \
inline typename ::flint::detail::nary_op_helper2<\
::flint::operations::name##_op, T1, T2, T3, T4>::enable::type \
name(const T1& t1, const T2& t2, const T3& t3, const T4& t4) \
{ \
return ::flint::detail::nary_op_helper2< \
::flint::operations::name##_op, T1, T2, T3, T4>::make(t1, t2, t3, t4); \
}
// Make the fiveary operation "name" available in current namespace
#define FLINT_DEFINE_FIVEARY_HERE(name) \
template \
inline typename ::flint::detail::nary_op_helper2<\
::flint::operations::name##_op, T1, T2, T3, T4, T5>::enable::type \
name(const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5) \
{ \
return ::flint::detail::nary_op_helper2< \
::flint::operations::name##_op, T1, T2, T3, T4, T5>::make(t1, t2, t3, t4, t5); \
}
// Make the sixary operation "name" available in current namespace
#define FLINT_DEFINE_SIXARY_HERE(name) \
template \
inline typename ::flint::detail::nary_op_helper2<\
::flint::operations::name##_op, T1, T2, T3, T4, T5, T6>::enable::type \
name(const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5, const T6& t6) \
{ \
return ::flint::detail::nary_op_helper2< \
::flint::operations::name##_op, T1, T2, T3, T4, T5, T6>::make(t1, t2, t3, t4, t5, t6); \
}
// Make the sevenary operation "name" available in current namespace
#define FLINT_DEFINE_SEVENARY_HERE(name) \
template \
inline typename ::flint::detail::nary_op_helper2<\
::flint::operations::name##_op, T1, T2, T3, T4, T5, T6, T7>::enable::type \
name(const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5, const T6& t6, const T7& t7) \
{ \
return ::flint::detail::nary_op_helper2< \
::flint::operations::name##_op, T1, T2, T3, T4, T5, T6, T7>::make(t1, t2, t3, t4, t5, t6, t7); \
}
// This set of macros should be called in namespace flint.
// Introduce a new binary operation called "name"
// NB: because of ADL bugs in g++ <= 4.4, the operation tag is called "name_op",
// whereas the function corresponding to it is just called "name"
#define FLINT_DEFINE_BINOP(name) \
namespace operations { \
struct name##_op { }; \
} \
FLINT_DEFINE_BINOP_HERE(name)
// This macro can be used to conditionally enable a function, and is mostly
// used for forwarding.
// A typical usage is
// template
// FLINT_BINOP_ENABLE_RETTYPE(myop, T, U) myop_other(const T& t, const U& u)
// {
// // perhaps something more interesting
// return myop(t, u);
// }
#define FLINT_BINOP_ENABLE_RETTYPE(name, T1, T2) \
typename detail::binary_op_helper::enable::type
// Introduce a new unary operation called "name"
#define FLINT_DEFINE_UNOP(name) \
namespace operations { \
struct name##_op { }; \
} \
FLINT_DEFINE_UNOP_HERE(name)
#define FLINT_UNOP_ENABLE_RETTYPE(name, T) \
typename detail::unary_op_helper::return_t
// See FLINTXX_DEFINE_MEMBER_UNOP_RTYPE
#define FLINT_UNOP_BUILD_RETTYPE(name, rettype, T) \
typename detail::unary_op_helper_with_rettype::return_t
#define FLINT_DEFINE_THREEARY(name) \
namespace operations { \
struct name##_op { }; \
} \
FLINT_DEFINE_THREEARY_HERE(name)
#define FLINT_THREEARY_ENABLE_RETTYPE(name, T1, T2, T3) \
typename detail::nary_op_helper2::enable::type
#define FLINT_DEFINE_FOURARY(name) \
namespace operations { \
struct name##_op { }; \
} \
FLINT_DEFINE_FOURARY_HERE(name)
#define FLINT_FOURARY_ENABLE_RETTYPE(name, T1, T2, T3, T4) \
typename detail::nary_op_helper2::enable::type
#define FLINT_DEFINE_FIVEARY(name) \
namespace operations { \
struct name##_op { }; \
} \
FLINT_DEFINE_FIVEARY_HERE(name)
#define FLINT_FIVEARY_ENABLE_RETTYPE(name, T1, T2, T3, T4, T5) \
typename detail::nary_op_helper2::enable::type
#define FLINT_DEFINE_SIXARY(name) \
namespace operations { \
struct name##_op { }; \
} \
FLINT_DEFINE_SIXARY_HERE(name)
#define FLINT_DEFINE_SEVENARY(name) \
namespace operations { \
struct name##_op { }; \
} \
FLINT_DEFINE_SEVENARY_HERE(name)
#endif