/*
Copyright (C) 2013 Tom Bachmann
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
// Sketch of a generic vector class.
#ifndef CXX_VECTOR_H
#define CXX_VECTOR_H
#include
#include
#include "expression.h"
#include "evaluation_tools.h"
#include "ltuple.h"
#include "mp.h"
namespace flint {
FLINT_DEFINE_BINOP(vector_at)
template
class vector_expression;
namespace detail {
template
struct vector_wrapper : derived_wrapper2 { };
template
struct vector_at_traits
{
typedef FLINT_BINOP_ENABLE_RETTYPE(vector_at, Expr, Idx) ref_t;
typedef ref_t cref_t;
static ref_t at(const Expr& v, Idx i)
{return vector_at(v, i);}
};
template
struct vector_at_traits
: Traits { };
}
template
class vector_expression
: public expression, Operation, Data>
{
public:
typedef expression,
Operation, Data> base_t;
typedef typename Underlying_traits::ref_t ref_t;
typedef typename Underlying_traits::cref_t cref_t;
typedef typename Underlying_traits::idx_t idx_t;
typedef typename Underlying_traits::underlying_t underlying_t;
typedef typename Underlying_traits::arrayref_t arrayref_t;
typedef typename Underlying_traits::arraysrcref_t arraysrcref_t;
vector_expression() {}
template
explicit vector_expression(const T& t) : base_t(t) {}
template
vector_expression(const T& t, const U& u) : base_t(t, u) {}
template
vector_expression(const T& t, const U& u, const V& v)
: base_t(t, u, v) {}
template
vector_expression& operator=(const T& t)
{
this->set(t);
return *this;
}
template
typename detail::vector_at_traits::ref_t operator[](Idx idx)
{
return detail::vector_at_traits::at(*this, idx);
}
template
typename detail::vector_at_traits::cref_t operator[](Idx idx) const
{
return detail::vector_at_traits::at(*this, idx);
}
idx_t size() const {return Underlying_traits::size(*this);}
arrayref_t _array() {return Underlying_traits::array(*this);}
arraysrcref_t _array() const {return Underlying_traits::array(*this);}
typename base_t::evaluated_t create_temporary() const
{
return Underlying_traits::create_temporary(*this);
}
protected:
explicit vector_expression(const Data& d) : base_t(d) {}
template
friend class expression;
};
namespace vectors {
// Similar to matrices, the size of a vector expression has to be known in
// order to allocate temporary objects. In this case, the generic
// implementation looks for any vector immediate subexpression and returs its
// size. This makes sense since mixing vectors of differing sizes usually makes
// no sense.
// Thus specialisation is usually only necessary in constructor-like operations,
// which do not involve vector immediates.
template
struct outsize
{
template
static unsigned get(const Expr& e)
{
return tools::find_subexpr_T(e)._data().size;
}
};
// Hack for ltuple_get, similar to the matrices case.
template
struct outsize >
{
template
static unsigned get(const Expr& e)
{
return outsize::get(
e._data().head);
}
};
}
namespace detail {
template
struct basic_vector_traits
{
typedef unsigned idx_t;
typedef Ref ref_t;
typedef const Cref cref_t;
typedef T underlying_t;
typedef ArrayT* arrayref_t;
typedef const ArrayT* arraysrcref_t;
template
static ref_t at(Expr& e, unsigned i)
{
return e.evaluate()._data().array[i];
}
template
static cref_t at(const Expr& e, unsigned i)
{
return e.evaluate()._data().array[i];
}
template
static arrayref_t array(Expr& e)
{
return e.evaluate()._data().array;
}
template
static arraysrcref_t array(const Expr& e)
{
return e.evaluate()._data().array;
}
};
template
struct rtfixed_size_traits
: basic_vector_traits
{
template
static unsigned size(const Expr& e)
{
return vectors::outsize::get(e);
}
template
static typename Expr::evaluated_t create_temporary(const Expr& e)
{
return typename Expr::evaluated_t(e.size());
}
};
template
struct fixed_size_traits
: basic_vector_traits
{
template
static unsigned size(const Expr& e)
{
return Expr::evaluated_t::data_t::size;
}
template
static typename Expr::evaluated_t create_temporary(const Expr& e)
{
return typename Expr::evaluated_t();
}
};
template
struct wrapped_vector_traits
: rtfixed_size_traits
{
typedef Size idx_t;
template
static Ref at(Expr& e, idx_t i)
{
return e.evaluate()._data().at(i);
}
template
static Cref at(const Expr& e, idx_t i)
{
return e.evaluate()._data().at(i);
}
};
template
struct rtfixed_size_data
{
const unsigned size;
T* array;
rtfixed_size_data(unsigned n)
: size(n), array(new T[n]) {}
~rtfixed_size_data() {delete[] array;}
rtfixed_size_data(const rtfixed_size_data& o)
: size(o.size)
{
// TODO this is very non-optimal ... (?)
array = new T[size];
for(unsigned i = 0;i < size;++i)
{
array[i] = o.array[i];
}
}
};
template
struct fixed_size_data
{
static const unsigned size = n;
T array[n];
};
} // detail
template
struct make_vector
{
typedef vector_expression,
operations::immediate, detail::rtfixed_size_data > type;
};
template
struct make_vector_n
{
typedef vector_expression,
operations::immediate, detail::fixed_size_data > type;
};
template
struct enable_vector_rules : mp::false_ { };
template
struct enable_vector_rules<
vector_expression >
: mp::true_ { };
namespace rules {
// temporary allocation inside ltuples
template
struct instantiate_temporaries,
vector_expression >
{
typedef ltuple_expression Expr;
typedef vector_expression T;
static T get(const Expr& e)
{
return T(vectors::outsize::get(e));
}
};
template
struct binary_expression,
operations::vector_at_op, T>
{
typedef typename Traits::underlying_t return_t;
template
static void doit(V& to,
const vector_expression& v,
T i)
{
to = Traits::at(v, i);
}
};
template
struct to_string,
traits::is_implemented > > >::type>
{
static std::string get(const Expr& e, int base)
{
// TODO inefficient
std::string res = "(";
for(typename Expr::idx_t i = 0;i < e.size();++i)
{
res += e[i].to_string();
if(i != e.size() - 1)
res += ", ";
}
res += ")";
return res;
}
};
template
struct equals >::type>
{
static bool get(const Expr& e1, const Expr& e2)
{
if(e1.size() != e2.size())
return false;
for(typename Expr::idx_t i = 0;i < e1.size();++i)
if(e1[i] != e2[i])
return false;
return true;
}
};
namespace rvdetail {
template
struct translate_data;
template
struct translate_expr
{
typedef translate_data trdata_t;
typedef typename Expr::underlying_t ul_t;
typedef typename ul_t::template make_helper<
typename Expr::operation_t, typename trdata_t::type> make_helper;
typedef typename make_helper::type type;
template
static type make(const Expr& e, Idx idx)
{
return make_helper::make(trdata_t::make(e._data(), idx));
}
};
template
struct translate_expr >::type>
{
typedef typename Expr::cref_t type;
template
static type make(const Expr& e, Idx idx)
{
return e[idx];
}
};
template
struct translate_data >
{
typedef translate_expr::type> trexpr;
typedef translate_data trtail;
typedef tuple type;
template
static type make(const tuple& e, Idx idx)
{
return type(trexpr::make(e.head, idx), trtail::make(e.tail, idx));
}
};
template<>
struct translate_data
{
typedef empty_tuple type;
template
static type make(empty_tuple, Idx) {return empty_tuple();}
};
template
struct enable_evaluation : mp::false_ {typedef void vector_t;};
template
struct enable_evaluation::type> >::type>
: enable_vector_rules::type::evaluated_t>
{
typedef typename traits::basetype::type::evaluated_t vector_t;
};
template
struct enable_evaluation >
: mp::and_, enable_evaluation >
{
typedef typename enable_evaluation::vector_t vector_t;
};
template<>
struct enable_evaluation
: mp::true_ { };
} //rvdetail
// TODO this is a bit greedy ..
template
struct evaluation >::type>
{
typedef rvdetail::translate_data translator;
typedef typename translator::type trdata_t;
typedef typename mp::find_evaluation<
Op, trdata_t, result_is_temporary>::type rule_t;
typedef typename rvdetail::enable_evaluation::vector_t vector_t;
typedef typename vector_t::evaluated_t return_t; // TODO
typedef typename rule_t::temporaries_t temporaries_t;
typedef typename rule_t::return_t trreturn_t;
template
static void doit(const Data& input, temporaries_t temps, Return* output)
{
for(typename return_t::idx_t i = 0;i < output->size();++i)
{
rule_t::doit(translator::make(input, i), temps, &((*output)[i]));
}
}
};
// TODO scalar multiplication etc
} // rules
} // flint
#endif