/* Copyright (C) 2010 Fredrik Johansson This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "fmpz.h" #include "fmpz_vec.h" #include "mpn_extras.h" #include "ulong_extras.h" int fmpz_factor_trial_range(fmpz_factor_t factor, const fmpz_t n, ulong start, ulong num_primes) { ulong exp; mp_limb_t p; mpz_t x; mp_ptr xd; mp_size_t xsize; slong found; slong trial_start, trial_stop; int ret = 1; if (!COEFF_IS_MPZ(*n)) { fmpz_factor_si(factor, *n); return ret; } _fmpz_factor_set_length(factor, 0); /* Make an mpz_t copy whose limbs will be mutated */ mpz_init(x); fmpz_get_mpz(x, n); if (x->_mp_size < 0) { x->_mp_size = -(x->_mp_size); factor->sign = -1; } else { factor->sign = 1; } xd = x->_mp_d; xsize = x->_mp_size; /* Factor out powers of two */ if (start == 0) { xsize = flint_mpn_remove_2exp(xd, xsize, &exp); if (exp != 0) _fmpz_factor_append_ui(factor, UWORD(2), exp); } trial_start = FLINT_MAX(1, start); trial_stop = FLINT_MIN(start + 1000, start + num_primes); do { found = flint_mpn_factor_trial(xd, xsize, trial_start, trial_stop); if (found) { p = n_primes_arr_readonly(found+1)[found]; exp = 1; xsize = flint_mpn_divexact_1(xd, xsize, p); /* Check if p^2 divides n */ if (flint_mpn_divisible_1_p(xd, xsize, p)) { /* TODO: when searching for squarefree numbers (Moebius function, etc), we can abort here. */ xsize = flint_mpn_divexact_1(xd, xsize, p); exp = 2; } /* If we're up to cubes, then maybe there are higher powers */ if (exp == 2 && flint_mpn_divisible_1_p(xd, xsize, p)) { xsize = flint_mpn_divexact_1(xd, xsize, p); xsize = flint_mpn_remove_power_ascending(xd, xsize, &p, 1, &exp); exp += 3; } _fmpz_factor_append_ui(factor, p, exp); /* flint_printf("added %wu %wu\n", p, exp); */ /* Continue using only trial division whilst it is successful. This allows quickly factoring huge highly composite numbers such as factorials, which can arise in some applications. */ trial_start = found + 1; trial_stop = FLINT_MIN(trial_start + 1000, start + num_primes); continue; } else { /* Insert primality test, perfect power test, other factoring algorithms here... */ trial_start = trial_stop; trial_stop = FLINT_MIN(trial_start + 1000, start + num_primes); } } while ((xsize > 1 || xd[0] != 1) && trial_start != trial_stop); /* Any factor left? */ if (xsize > 1 || xd[0] != 1) ret = 0; mpz_clear(x); return ret; }