/* Copyright (C) 2021 Daniel Schultz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "fmpz_mod_vec.h" #include "fmpz_mod_mpoly_factor.h" static void fmpz_mod_mpoly_monomial_evals1( fmpz_mod_polyun_t E, const fmpz_mod_mpoly_t A, const ulong * Amarks, slong Amarkslen, fmpz_mod_poly_struct * betas, slong m, const fmpz_mod_mpoly_ctx_t ctx) /* temp space */ { mpoly1_monomial_evals_fmpz_mod(E, A->exps, A->bits, Amarks, Amarkslen, betas, m, ctx->minfo, ctx->ffinfo); } static void fmpz_mod_polyu1n_zip_eval_cur_inc_coeff( fmpz_mod_poly_t E, fmpz_mod_polyun_t Acur, const fmpz_mod_polyun_t Ainc, const fmpz_mod_polyun_t Acoeff, const fmpz_mod_ctx_t ctx) { slong i; fmpz_t c; FLINT_ASSERT(Acur->length > 0); FLINT_ASSERT(Acur->length == Ainc->length); FLINT_ASSERT(Acur->length == Acoeff->length); fmpz_init(c); fmpz_mod_poly_zero(E, ctx); for (i = 0; i < Acur->length; i++) { slong this_len = Acur->coeffs[i].length; FLINT_ASSERT(this_len == Ainc->coeffs[i].length); FLINT_ASSERT(this_len == Acoeff->coeffs[i].length); _fmpz_mod_zip_eval_step(c, Acur->coeffs[i].coeffs, Ainc->coeffs[i].coeffs, Acoeff->coeffs[i].coeffs, this_len, ctx); fmpz_mod_poly_set_coeff_fmpz(E, Acur->exps[i], c, ctx); } fmpz_clear(c); } static int fmpz_mod_poly_add_zip_must_match( fmpz_mod_polyun_t Z, fmpz_mod_poly_t A, slong cur_length) { slong i, ai; slong Alen = A->length; ulong * Zexps = Z->exps; fmpz_mod_poly_struct * Zcoeffs = Z->coeffs; fmpz * Acoeffs = A->coeffs; ai = Alen - 1; for (i = 0; i < Z->length; i++) { if (ai >= 0 && Zexps[i] == ai) { /* Z present, A present */ fmpz_set(Zcoeffs[i].coeffs + cur_length, Acoeffs + ai); Zcoeffs[i].length = cur_length + 1; do { ai--; } while (ai >= 0 && fmpz_is_zero(Acoeffs + ai)); } else if (ai < 0 || Zexps[i] > ai) { /* Z present, A missing */ fmpz_zero(Zcoeffs[i].coeffs + cur_length); Zcoeffs[i].length = cur_length + 1; } else { /* Z missing, A present */ return 0; } } return ai < 0; } static fmpz * fmpz_mod_mat_row_ref(fmpz_mod_mat_t M, slong i) { return M->mat->rows[i]; } /* Try to set G to the gcd of A and B given the form f of G. f = sum_i X^i sum_j c_ij x^e_j images are formed from evaluation at x = alpha^(k+1), 0 <= k < l Assume all image gcds have the same degree and are sum_i X^i g_ik, 0 <= k < l Then, for each 0 <= k < l there is a scalar factor s_k such that sum_j c_ij alpha^((k+1)e_j) = s_k g_ik for 0 <= i <= degree(gcd) */ int fmpz_mod_mpolyl_gcds_zippel( fmpz_mod_mpoly_t G, const ulong * Gmarks, slong Gmarkslen, fmpz_mod_mpoly_t A, fmpz_mod_mpoly_t B, slong *perm, slong l, slong var, const fmpz_mod_mpoly_ctx_t ctx, flint_rand_t state, slong * Gdegbound, n_poly_t Amarks, n_poly_t Bmarks) { int success; int betas_tries_left, underdetermined_left, exceeded_left; slong i, s, S, n, cur_zip_image; slong Adeg, Bdeg, Gdeg; flint_bitcnt_t bits = A->bits; fmpz_mod_poly_t Aev, Bev, Gev; fmpz_mod_polyun_t Aeh_inc, Aeh_cur, Aeh_coeff_mock; fmpz_mod_polyun_t Beh_inc, Beh_cur, Beh_coeff_mock; fmpz_mod_polyun_t HG, MG, ZG; fmpz * betas; fmpz_mod_poly_struct * beta_caches; fmpz_mod_mat_struct * ML; fmpz_mod_mat_t MF, Msol, MFtemp, Mwindow; FLINT_ASSERT(1 < var && var < ctx->minfo->nvars); FLINT_ASSERT(bits <= FLINT_BITS); FLINT_ASSERT(G->bits == bits); FLINT_ASSERT(A->bits == bits); FLINT_ASSERT(B->bits == bits); FLINT_ASSERT(A->length > 0); FLINT_ASSERT(B->length > 0); FLINT_ASSERT(G->length > 0); FLINT_ASSERT(Gmarkslen > 0); FLINT_ASSERT(*Gdegbound == mpoly_degree_si(G->exps, G->length, bits, 0, ctx->minfo)); if (Gmarkslen < 2) { fmpz_one(G->coeffs + 0); return Gmarks[1] - Gmarks[0] == 1; } betas = _fmpz_vec_init(var); beta_caches = FLINT_ARRAY_ALLOC(var, fmpz_mod_poly_struct); for (i = 0; i < var; i++) fmpz_mod_poly_init(beta_caches + i, ctx->ffinfo); ML = FLINT_ARRAY_ALLOC(Gmarkslen, fmpz_mod_mat_struct); for (i = 0; i < Gmarkslen; i++) fmpz_mod_mat_init(ML + i, 0, 0, fmpz_mod_ctx_modulus(ctx->ffinfo)); fmpz_mod_mat_init(MF, 0, l, fmpz_mod_ctx_modulus(ctx->ffinfo)); fmpz_mod_mat_init(Msol, l, 1, fmpz_mod_ctx_modulus(ctx->ffinfo)); fmpz_mod_poly_init(Aev, ctx->ffinfo); fmpz_mod_poly_init(Bev, ctx->ffinfo); fmpz_mod_poly_init(Gev, ctx->ffinfo); fmpz_mod_polyun_init(Aeh_inc, ctx->ffinfo); fmpz_mod_polyun_init(Aeh_cur, ctx->ffinfo); fmpz_mod_polyun_init(Beh_inc, ctx->ffinfo); fmpz_mod_polyun_init(Beh_cur, ctx->ffinfo); Aeh_coeff_mock->exps = NULL; Aeh_coeff_mock->coeffs = NULL; Aeh_coeff_mock->length = 0; Aeh_coeff_mock->alloc = 0; Beh_coeff_mock->exps = NULL; Beh_coeff_mock->coeffs = NULL; Beh_coeff_mock->length = 0; Beh_coeff_mock->alloc = 0; fmpz_mod_polyun_init(HG, ctx->ffinfo); fmpz_mod_polyun_init(MG, ctx->ffinfo); fmpz_mod_polyun_init(ZG, ctx->ffinfo); Adeg = fmpz_mod_mpoly_degree_si(A, 0, ctx); Bdeg = fmpz_mod_mpoly_degree_si(B, 0, ctx); mpoly1_fill_marks(&Amarks->coeffs, &Amarks->length, &Amarks->alloc, A->exps, A->length, bits, ctx->minfo); mpoly1_fill_marks(&Bmarks->coeffs, &Bmarks->length, &Bmarks->alloc, B->exps, B->length, bits, ctx->minfo); betas_tries_left = 10; underdetermined_left = 3; exceeded_left = 3; next_betas: if (--betas_tries_left < 0) { success = -1; goto cleanup; } for (i = 1; i < var; i++) { fmpz_mod_rand_not_zero(betas + i, state, ctx->ffinfo); fmpz_mod_pow_cache_start(betas + i, beta_caches + i, ctx->ffinfo); } fmpz_mod_mpoly_monomial_evals1(Aeh_inc, A, Amarks->coeffs, Amarks->length, beta_caches + 1, var, ctx); fmpz_mod_mpoly_monomial_evals1(Beh_inc, B, Bmarks->coeffs, Bmarks->length, beta_caches + 1, var, ctx); fmpz_mod_polyun_set(Aeh_cur, Aeh_inc, ctx->ffinfo); fmpz_mod_polyun_set(Beh_cur, Beh_inc, ctx->ffinfo); fmpz_mod_mpoly_mock_eval_coeff(Aeh_coeff_mock, A, Aeh_inc, ctx); fmpz_mod_mpoly_mock_eval_coeff(Beh_coeff_mock, B, Beh_inc, ctx); fmpz_mod_mpoly_monomial_evals1(HG, G, Gmarks, Gmarkslen, beta_caches + 1, var, ctx); fmpz_mod_polyun_zip_start(ZG, HG, l, ctx->ffinfo); n = fmpz_mod_polyun_product_roots(MG, HG, ctx->ffinfo); FLINT_ASSERT(n <= l); for (cur_zip_image = 0; cur_zip_image < l; cur_zip_image++) { fmpz_mod_polyu1n_zip_eval_cur_inc_coeff(Aev, Aeh_cur, Aeh_inc, Aeh_coeff_mock, ctx->ffinfo); fmpz_mod_polyu1n_zip_eval_cur_inc_coeff(Bev, Beh_cur, Beh_inc, Beh_coeff_mock, ctx->ffinfo); if (_fmpz_mod_poly_degree(Aev) != Adeg) goto next_betas; if (_fmpz_mod_poly_degree(Bev) != Bdeg) goto next_betas; fmpz_mod_poly_gcd(Gev, Aev, Bev, ctx->ffinfo); Gdeg = _fmpz_mod_poly_degree(Gev); if (Gdeg > *Gdegbound) { if (--exceeded_left >= 0) goto next_betas; success = -1; goto cleanup; } if (Gdeg < *Gdegbound) { *Gdegbound = Gdeg; success = 0; goto cleanup; } if (!fmpz_mod_poly_add_zip_must_match(ZG, Gev, cur_zip_image)) goto next_betas; } fmpz_mod_mat_clear(Msol); fmpz_mod_mat_init(Msol, 1, l, fmpz_mod_ctx_modulus(ctx->ffinfo)); s = perm[0]; if (Gmarks[s + 1] - Gmarks[s] == 1) { /* monic case */ fmpz * temp = betas; /* use betas[0] for tmp space */ fmpz_one(temp); for (i = 0; i < l; i++) { fmpz_mod_mul(temp, temp, HG->coeffs[s].coeffs + 0, ctx->ffinfo); if (!fmpz_mod_divides(fmpz_mod_mat_entry(Msol, 0, i), temp, ZG->coeffs[s].coeffs + i, ctx->ffinfo)) { goto general_case; } } goto try_it; } general_case: fmpz_mod_mat_clear(Msol); fmpz_mod_mat_init(Msol, 0, l, fmpz_mod_ctx_modulus(ctx->ffinfo)); fmpz_mod_mat_clear(MF); fmpz_mod_mat_init(MF, 0, l, fmpz_mod_ctx_modulus(ctx->ffinfo)); for (S = 0; S < Gmarkslen; S++) { s = perm[S]; n = Gmarks[s + 1] - Gmarks[s]; FLINT_ASSERT(n <= l); if (fmpz_mod_mat_nrows(ML + s) != l || fmpz_mod_mat_ncols(ML + s) != l + n) { fmpz_mod_mat_clear(ML + s); fmpz_mod_mat_init(ML + s, l, l + n, fmpz_mod_ctx_modulus(ctx->ffinfo)); } _fmpz_vec_set(fmpz_mod_mat_row_ref(ML + s, 0), HG->coeffs[s].coeffs, n); for (i = 1; i < l; i++) { _fmpz_mod_vec_mul(fmpz_mod_mat_row_ref(ML + s, i), fmpz_mod_mat_row_ref(ML + s, i - 1), HG->coeffs[s].coeffs, n, ctx->ffinfo); } for (i = 0; i < l; i++) { _fmpz_vec_zero(fmpz_mod_mat_row_ref(ML + s, i) + n, l); fmpz_set(fmpz_mod_mat_row_ref(ML + s, i) + n + i, ZG->coeffs[s].coeffs + i); } /* l x (n + l) matrix ML[s] n l | monomial evals 1 | image coeffs 0 | l | ... | on the | | monomial evals l | 0 diagonal | */ fmpz_mod_mat_rref(NULL, ML + s); for (i = 0; i < n; i++) if (!fmpz_is_one(fmpz_mod_mat_entry(ML + s, i, i))) goto next_betas; /* delete zero rows from MF, matrix interface makes this fun */ i = fmpz_mod_mat_nrows(MF); while (i > 1 && _fmpz_vec_is_zero(fmpz_mod_mat_row_ref(MF, i - 1), l)) i--; if (i < fmpz_mod_mat_nrows(MF)) { fmpz_mod_mat_window_init(Mwindow, MF, 0, 0, i, l); fmpz_mod_mat_init(MFtemp, i, l, fmpz_mod_ctx_modulus(ctx->ffinfo)); fmpz_mod_mat_set(MFtemp, Mwindow); fmpz_mod_mat_swap(MF, MFtemp); fmpz_mod_mat_clear(MFtemp); fmpz_mod_mat_window_clear(Mwindow); } /* appends rows to MF */ fmpz_mod_mat_window_init(Mwindow, ML + s, n, n, l, n + l); fmpz_mod_mat_init(MFtemp, i + l - n, l, fmpz_mod_ctx_modulus(ctx->ffinfo)); fmpz_mod_mat_concat_vertical(MFtemp, MF, Mwindow); fmpz_mod_mat_swap(MF, MFtemp); fmpz_mod_mat_clear(MFtemp); fmpz_mod_mat_window_clear(Mwindow); fmpz_mod_mat_clear(Msol); fmpz_mod_mat_init_nullspace_tr(Msol, MF, ctx->ffinfo); if (fmpz_mod_mat_nrows(Msol) < 1) { success = 0; goto cleanup; } if (fmpz_mod_mat_nrows(Msol) == 1) break; } if (fmpz_mod_mat_nrows(Msol) != 1) { if (--underdetermined_left >= 0) goto next_betas; success = -1; goto cleanup; } try_it: /* the first row of Msol has the scales */ for (s = 0; s < Gmarkslen; s++) { _fmpz_mod_vec_mul(ZG->coeffs[s].coeffs, ZG->coeffs[s].coeffs, fmpz_mod_mat_row_ref(Msol, 0), l, ctx->ffinfo); } success = fmpz_mod_polyun_zip_solve(G, ZG, HG, MG, ctx); if (success < 0) goto next_betas; cleanup: fmpz_mod_poly_clear(Aev, ctx->ffinfo); fmpz_mod_poly_clear(Bev, ctx->ffinfo); fmpz_mod_poly_clear(Gev, ctx->ffinfo); _fmpz_vec_clear(betas, var); for (i = 0; i < var; i++) fmpz_mod_poly_clear(beta_caches + i, ctx->ffinfo); flint_free(beta_caches); for (i = 0; i < Gmarkslen; i++) fmpz_mod_mat_clear(ML + i); flint_free(ML); fmpz_mod_mat_clear(MF); fmpz_mod_mat_clear(Msol); fmpz_mod_polyun_clear(Aeh_inc, ctx->ffinfo); fmpz_mod_polyun_clear(Aeh_cur, ctx->ffinfo); fmpz_mod_polyun_clear(Beh_inc, ctx->ffinfo); fmpz_mod_polyun_clear(Beh_cur, ctx->ffinfo); flint_free(Aeh_coeff_mock->coeffs); flint_free(Beh_coeff_mock->coeffs); fmpz_mod_polyun_clear(HG, ctx->ffinfo); fmpz_mod_polyun_clear(MG, ctx->ffinfo); fmpz_mod_polyun_clear(ZG, ctx->ffinfo); return success; } static int _do_bivar_or_univar( fmpz_mod_mpoly_t G, fmpz_mod_mpoly_t Abar, fmpz_mod_mpoly_t Bbar, fmpz_mod_mpoly_t A, fmpz_mod_mpoly_t B, slong var, const fmpz_mod_mpoly_ctx_t ctx, flint_rand_t state) { if (var == 1) { int success; fmpz_mod_poly_t c; fmpz_mod_polyun_t Aev, Bev, Gev, Abarev, Bbarev; fmpz_mod_poly_polyun_stack_t St; fmpz_mod_poly_stack_init(St->poly_stack); fmpz_mod_polyun_stack_init(St->polyun_stack); fmpz_mod_polyun_init(Aev, ctx->ffinfo); fmpz_mod_polyun_init(Bev, ctx->ffinfo); fmpz_mod_polyun_init(Gev, ctx->ffinfo); fmpz_mod_polyun_init(Abarev, ctx->ffinfo); fmpz_mod_polyun_init(Bbarev, ctx->ffinfo); fmpz_mod_poly_init(c, ctx->ffinfo); fmpz_mod_mpoly_get_polyu1n(Aev, A, 0, 1, ctx); fmpz_mod_mpoly_get_polyu1n(Bev, B, 0, 1, ctx); success = fmpz_mod_polyu1n_gcd_brown_smprime(Gev, Abarev, Bbarev, Aev, Bev, ctx->ffinfo, St->poly_stack, St->polyun_stack); if (success) { _fmpz_mod_poly_vec_content(c, Gev->coeffs, Gev->length, ctx->ffinfo); success = fmpz_mod_poly_is_one(c, ctx->ffinfo); fmpz_mod_mpoly_set_polyu1n(G, Gev, 0, 1, ctx); } fmpz_mod_poly_clear(c, ctx->ffinfo); fmpz_mod_polyun_clear(Aev, ctx->ffinfo); fmpz_mod_polyun_clear(Bev, ctx->ffinfo); fmpz_mod_polyun_clear(Gev, ctx->ffinfo); fmpz_mod_polyun_clear(Abarev, ctx->ffinfo); fmpz_mod_polyun_clear(Bbarev, ctx->ffinfo); fmpz_mod_poly_stack_clear(St->poly_stack); fmpz_mod_polyun_stack_clear(St->polyun_stack); return success; } else { fmpz_mod_poly_t a, b, c; fmpz_mod_poly_init(a, ctx->ffinfo); fmpz_mod_poly_init(b, ctx->ffinfo); fmpz_mod_poly_init(c, ctx->ffinfo); fmpz_mod_mpoly_get_fmpz_mod_poly(a, A, 0, ctx); fmpz_mod_mpoly_get_fmpz_mod_poly(b, B, 0, ctx); fmpz_mod_poly_gcd(c, a, b, ctx->ffinfo); _fmpz_mod_mpoly_set_fmpz_mod_poly(G, G->bits, c->coeffs, c->length, 0, ctx); fmpz_mod_poly_clear(a, ctx->ffinfo); fmpz_mod_poly_clear(b, ctx->ffinfo); fmpz_mod_poly_clear(c, ctx->ffinfo); return 1; } } /* Assume content_x0(G) = 1, and fail otherwise when var = 1, this is checked explicitly. when var = 2, The possibility of f(x2) | G(x0,x1,x2) for nonconstant f(x2) is ruled out by the explicit check. suppose f(x1,x2) | G(x0,x1,x2) where f is not in Fp[x2] the evaluation point x2 = a2 is chosen so that lc_{x0,x1}(G(x0,x1,x2)) does not vanish at x2 = a2. This means that lc_x1(f(x1, x2)) does not vanish at x2 = a2, and so f(x1, a2) is a nontrivial divisor of G(x0,x1,a2) which would be caught by the recursive call. when var = 3, The possibility of f(x3) | G(x0,x1,x2,x3) for nonconstant f(x3) is ruled out by the explicit check. suppose f(x1,x2,x3) | G(x0,x1,x2,x3) where f is not in Fp[x3] the evaluation point x3 = a3 is chosen so that lc_{x0,x1,X2}(G(x0,x1,x2,X3)) does not vanish at x3 = a3. This means that G(x0, x1, x2, a3) has content that would be caught be the recursive call. ... */ int fmpz_mod_mpolyl_gcdp_zippel( fmpz_mod_mpoly_t G, fmpz_mod_mpoly_t Abar, fmpz_mod_mpoly_t Bbar, fmpz_mod_mpoly_t A, fmpz_mod_mpoly_t B, slong var, const fmpz_mod_mpoly_ctx_t ctx, flint_rand_t state) { flint_bitcnt_t bits = A->bits; slong i, j, N = mpoly_words_per_exp_sp(bits, ctx->minfo); slong Adeg, Bdeg, Alastdeg, Blastdeg, Gdeg; slong bound, Gdegbound, lastdeg, req_zip_images; int success, changed, have_enough; fmpz_t alpha, start_alpha, gammaeval, temp; fmpz_mod_poly_t a, b, c, gamma, modulus, alphapow; fmpz_mod_mpoly_t Ac, Bc, Aeval, Beval, Geval, Abareval, Bbareval; fmpz_mod_mpolyn_t H, T; n_poly_t Amarks, Bmarks, Gmarks; slong * perm = NULL; FLINT_ASSERT(ctx->minfo->ord == ORD_LEX); FLINT_ASSERT(0 <= var && var < ctx->minfo->nvars); FLINT_ASSERT(A->bits == bits); FLINT_ASSERT(B->bits == bits); FLINT_ASSERT(G->bits == bits); FLINT_ASSERT(A->length > 0); FLINT_ASSERT(B->length > 0); if (var < 2) return _do_bivar_or_univar(G, Abar, Bbar, A, B, var, ctx, state); fmpz_init(alpha); fmpz_init(start_alpha); fmpz_init(gammaeval); fmpz_init(temp); fmpz_mod_mpoly_init3(Ac, 0, bits, ctx); fmpz_mod_mpoly_init3(Bc, 0, bits, ctx); fmpz_mod_mpoly_init3(Aeval, 0, bits, ctx); fmpz_mod_mpoly_init3(Beval, 0, bits, ctx); fmpz_mod_mpoly_init3(Geval, 0, bits, ctx); fmpz_mod_mpoly_init3(Abareval, 0, bits, ctx); fmpz_mod_mpoly_init3(Bbareval, 0, bits, ctx); fmpz_mod_poly_init(a, ctx->ffinfo); fmpz_mod_poly_init(b, ctx->ffinfo); fmpz_mod_poly_init(c, ctx->ffinfo); fmpz_mod_poly_init(gamma, ctx->ffinfo); fmpz_mod_poly_init(modulus, ctx->ffinfo); fmpz_mod_poly_init2(alphapow, 3, ctx->ffinfo); fmpz_mod_mpolyn_init(H, bits, ctx); fmpz_mod_mpolyn_init(T, bits, ctx); n_poly_init(Amarks); n_poly_init(Bmarks); n_poly_init(Gmarks); fmpz_mod_mpolyl_content(Ac, A, var, ctx); if (!fmpz_mod_mpoly_is_one(Ac, ctx)) { success = fmpz_mod_mpoly_divides(A, A, Ac, ctx); FLINT_ASSERT(success); } fmpz_mod_mpolyl_content(Bc, B, var, ctx); if (!fmpz_mod_mpoly_is_one(Bc, ctx)) { success = fmpz_mod_mpoly_divides(B, B, Bc, ctx); FLINT_ASSERT(success); } fmpz_mod_mpoly_get_fmpz_mod_poly(a, Ac, var, ctx); fmpz_mod_mpoly_get_fmpz_mod_poly(b, Bc, var, ctx); fmpz_mod_poly_gcd(c, a, b, ctx->ffinfo); success = fmpz_mod_poly_is_one(c, ctx->ffinfo); if (!success) goto cleanup; fmpz_mod_mpolyl_lead_coeff(Ac, A, var, ctx); fmpz_mod_mpolyl_lead_coeff(Bc, B, var, ctx); fmpz_mod_mpoly_get_fmpz_mod_poly(a, Ac, var, ctx); fmpz_mod_mpoly_get_fmpz_mod_poly(b, Bc, var, ctx); fmpz_mod_poly_gcd(gamma, a, b, ctx->ffinfo); /* degree bound on the gcd */ Adeg = fmpz_mod_mpoly_degree_si(A, 0, ctx); Bdeg = fmpz_mod_mpoly_degree_si(B, 0, ctx); Gdegbound = FLINT_MIN(Adeg, Bdeg); /* bound of the number of images required */ Alastdeg = fmpz_mod_mpoly_degree_si(A, var, ctx); Blastdeg = fmpz_mod_mpoly_degree_si(B, var, ctx); bound = 1 + FLINT_MIN(Alastdeg, Blastdeg) + _fmpz_mod_poly_degree(gamma); fmpz_mod_poly_one(modulus, ctx->ffinfo); fmpz_mod_rand_not_zero(start_alpha, state, ctx->ffinfo); fmpz_set(alpha, start_alpha); outer_loop: /* get new evaluation point */ if (fmpz_cmp_ui(alpha, 2) < 0) fmpz_set(alpha, fmpz_mod_ctx_modulus(ctx->ffinfo)); fmpz_sub_ui(alpha, alpha, 1); success = !fmpz_equal(alpha, start_alpha); if (!success) goto cleanup; FLINT_ASSERT(alphapow->alloc >= 2); fmpz_one(alphapow->coeffs + 0); fmpz_set(alphapow->coeffs + 1, alpha); alphapow->length = 2; /* make sure evaluation point does not kill both lc(A) and lc(B) */ fmpz_mod_poly_eval_pow(gammaeval, gamma, alphapow, ctx->ffinfo); if (fmpz_is_zero(gammaeval)) goto outer_loop; /* make sure evaluation point does not kill either A or B */ fmpz_mod_mpoly_evaluate_one_fmpz(Aeval, A, var, alpha, ctx); fmpz_mod_mpoly_evaluate_one_fmpz(Beval, B, var, alpha, ctx); if (Aeval->length == 0 || Beval->length == 0) goto outer_loop; fmpz_mod_mpoly_repack_bits_inplace(Aeval, bits, ctx); fmpz_mod_mpoly_repack_bits_inplace(Beval, bits, ctx); success = fmpz_mod_mpolyl_gcdp_zippel(Geval, Abareval, Bbareval, Aeval, Beval, var - 1, ctx, state); if (!success) goto cleanup; FLINT_ASSERT(Geval->length > 0); FLINT_ASSERT(fmpz_is_one(Geval->coeffs + 0)); if (fmpz_mod_mpoly_is_one(Geval, ctx)) goto gcd_is_trivial; Gdeg = fmpz_mod_mpoly_degree_si(Geval, 0, ctx); if (Gdeg > Gdegbound) goto outer_loop; if (Gdeg < Gdegbound) fmpz_mod_poly_one(modulus, ctx->ffinfo); Gdegbound = Gdeg; /* update interpolant H */ fmpz_mod_mpoly_scalar_mul_fmpz_mod_invertible(Geval, Geval, gammaeval, ctx); if (_fmpz_mod_poly_degree(modulus) > 0) { fmpz_mod_poly_eval_pow(temp, modulus, alphapow, ctx->ffinfo); fmpz_mod_poly_scalar_div_fmpz(modulus, modulus, temp, ctx->ffinfo); changed = fmpz_mod_mpolyn_interp_crt_sm_mpoly(&lastdeg, H, T, Geval, modulus, alphapow, ctx); if (!changed) { _fmpz_mod_poly_vec_remove_content(c, H->coeffs, H->length, ctx->ffinfo); fmpz_mod_mpoly_cvtfrom_mpolyn(G, H, var, ctx); fmpz_mod_mpoly_make_monic(G, G, ctx); success = fmpz_mod_mpoly_divides(Abar, A, G, ctx) && fmpz_mod_mpoly_divides(Bbar, B, G, ctx); if (success) goto cleanup; /* restore H */ _fmpz_mod_poly_vec_mul_poly(H->coeffs, H->length, c, ctx->ffinfo); goto outer_loop; } } else { fmpz_mod_mpolyn_interp_lift_sm_mpoly(H, Geval, ctx); } fmpz_mod_neg(temp, alpha, ctx->ffinfo); fmpz_mod_poly_shift_left_scalar_addmul_fmpz_mod(modulus, 1, temp, ctx->ffinfo); fmpz_mod_mpoly_fit_length(G, H->length, ctx); mpoly_copy_monomials(G->exps, H->exps, H->length, N); G->length = H->length; mpoly1_fill_marks(&Gmarks->coeffs, &Gmarks->length, &Gmarks->alloc, G->exps, G->length, bits, ctx->minfo); perm = FLINT_ARRAY_REALLOC(perm, Gmarks->length, slong); for (i = 0; i < Gmarks->length; i++) perm[i] = i; #define length(k) Gmarks->coeffs[(k)+1] - Gmarks->coeffs[k] for (i = 1; i < Gmarks->length; i++) for (j = i; j > 0 && length(perm[j-1]) > length(perm[j]); j--) SLONG_SWAP(perm[j-1], perm[j]); req_zip_images = Gmarks->length - 2; j = 0; for (i = 0; i < Gmarks->length; i++) { req_zip_images += length(i); j = FLINT_MAX(j, length(i)); } if (Gmarks->length > 1) req_zip_images = req_zip_images / (Gmarks->length - 1); req_zip_images = FLINT_MAX(req_zip_images, j); req_zip_images += 1; inner_loop: /* get new evaluation point */ if (fmpz_cmp_ui(alpha, 2) < 0) fmpz_set(alpha, fmpz_mod_ctx_modulus(ctx->ffinfo)); fmpz_sub_ui(alpha, alpha, 1); success = !fmpz_equal(alpha, start_alpha); if (!success) goto cleanup; FLINT_ASSERT(alphapow->alloc >= 2); fmpz_one(alphapow->coeffs + 0); fmpz_set(alphapow->coeffs + 1, alpha); alphapow->length = 2; /* make sure evaluation does not kill both lc(A) and lc(B) */ fmpz_mod_poly_eval_pow(gammaeval, gamma, alphapow, ctx->ffinfo); if (fmpz_is_zero(gammaeval)) goto inner_loop; /* make sure evaluation does not kill either A or B */ fmpz_mod_mpoly_evaluate_one_fmpz(Aeval, A, var, alpha, ctx); fmpz_mod_mpoly_evaluate_one_fmpz(Beval, B, var, alpha, ctx); if (Aeval->length == 0 || Beval->length == 0) goto outer_loop; fmpz_mod_mpoly_repack_bits_inplace(Aeval, bits, ctx); fmpz_mod_mpoly_repack_bits_inplace(Beval, bits, ctx); success = fmpz_mod_mpolyl_gcds_zippel(Geval, Gmarks->coeffs, Gmarks->length, Aeval, Beval, perm, req_zip_images, var, ctx, state, &Gdegbound, Amarks, Bmarks); if (success == 0) { fmpz_mod_poly_one(modulus, ctx->ffinfo); goto outer_loop; } if (success < 0 || fmpz_is_zero(Geval->coeffs + 0)) goto inner_loop; /* update interpolant H */ fmpz_mod_divides(temp, gammaeval, Geval->coeffs + 0, ctx->ffinfo); fmpz_mod_mpoly_scalar_mul_fmpz_mod_invertible(Geval, Geval, temp, ctx); FLINT_ASSERT(_fmpz_mod_poly_degree(modulus) > 0); fmpz_mod_poly_eval_pow(temp, modulus, alphapow, ctx->ffinfo); fmpz_mod_poly_scalar_div_fmpz(modulus, modulus, temp, ctx->ffinfo); changed = fmpz_mod_mpolyn_interp_mcrt_sm_mpoly(&lastdeg, H, Geval, modulus, alphapow, ctx); fmpz_mod_neg(temp, alpha, ctx->ffinfo); fmpz_mod_poly_shift_left_scalar_addmul_fmpz_mod(modulus, 1, temp, ctx->ffinfo); have_enough = _fmpz_mod_poly_degree(modulus) >= bound; if (changed && !have_enough) goto inner_loop; if (!changed || have_enough) { /* since H started from a correct modular image and was scaled wrt to the univariate gamma, if H is the correct gcd modulo content, the only content is univariate in the last variable */ _fmpz_mod_poly_vec_remove_content(c, H->coeffs, H->length, ctx->ffinfo); fmpz_mod_mpoly_cvtfrom_mpolyn(G, H, var, ctx); fmpz_mod_mpoly_make_monic(G, G, ctx); success = fmpz_mod_mpoly_divides(Abar, A, G, ctx) && fmpz_mod_mpoly_divides(Bbar, B, G, ctx); if (success) goto cleanup; /* restore H */ _fmpz_mod_poly_vec_mul_poly(H->coeffs, H->length, c, ctx->ffinfo); } if (have_enough) { fmpz_mod_poly_one(modulus, ctx->ffinfo); goto outer_loop; } goto inner_loop; cleanup: flint_free(perm); fmpz_clear(alpha); fmpz_clear(start_alpha); fmpz_clear(gammaeval); fmpz_clear(temp); fmpz_mod_mpoly_clear(Ac, ctx); fmpz_mod_mpoly_clear(Bc, ctx); fmpz_mod_mpoly_clear(Aeval, ctx); fmpz_mod_mpoly_clear(Beval, ctx); fmpz_mod_mpoly_clear(Geval, ctx); fmpz_mod_mpoly_clear(Abareval, ctx); fmpz_mod_mpoly_clear(Bbareval, ctx); fmpz_mod_poly_clear(a, ctx->ffinfo); fmpz_mod_poly_clear(b, ctx->ffinfo); fmpz_mod_poly_clear(c, ctx->ffinfo); fmpz_mod_poly_clear(gamma, ctx->ffinfo); fmpz_mod_poly_clear(modulus, ctx->ffinfo); fmpz_mod_poly_clear(alphapow, ctx->ffinfo); fmpz_mod_mpolyn_clear(H, ctx); fmpz_mod_mpolyn_clear(T, ctx); n_poly_clear(Amarks); n_poly_clear(Bmarks); n_poly_clear(Gmarks); FLINT_ASSERT(success || fmpz_abs_fits_ui(fmpz_mod_ctx_modulus(ctx->ffinfo))); return success; gcd_is_trivial: fmpz_mod_mpoly_one(G, ctx); fmpz_mod_mpoly_set(Abar, A, ctx); fmpz_mod_mpoly_set(Bbar, B, ctx); success = 1; goto cleanup; }