/* Copyright (C) 2019 Daniel Schultz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "fmpz_mod_poly.h" /* typedef struct { slong npoints; fmpz_mod_poly_t R0, R1; fmpz_mod_poly_t V0, V1; fmpz_mod_poly_t qt, rt; temporaries fmpz_mod_poly_t points; } fmpz_mod_berlekamp_massey_struct; typedef fmpz_mod_berlekamp_massey_struct nmod_berlekamp_massey_t[1]; n = B->npoints is the number of points a_1, ..., a_n that have been added to the sequence. The polynomials A and S are then defined as A = x^n S = a_1*x^(n-1) + a_2*x^(n-2) + ... + a_n We maintain polynomials U0, V0, U1, V1 such that U0*A + V0*S = R0 deg(R0) >= n/2 U1*A + V1*S = R1 deg(R1) < n/2 where R0 and R1 are consecutive euclidean remainders and U0, V0, U1, V1 are the corresponding Bezout coefficients. Note that deg(U1) < deg(V1) = deg(A) - deg(R0) <= n/2 The U0 and U1 are not stored explicitly. The points a_1, ..., a_n are stored in B->points, which is used merely as a resizable array. The main usage of this function is the rational reconstruction of a series a1 a2 a3 -U1 --- + --- + --- + ... = ---- maybe x x^2 x^3 V1 It can be seen that a1 a2 an -U1 R1 --- + --- + ... --- = --- + ------- x x^2 x^n V1 V1*x^n Thus the error is O(1/x^(n+1)) iff deg(R1) < deg(V1). */ void fmpz_mod_berlekamp_massey_init( fmpz_mod_berlekamp_massey_t B, const fmpz_mod_ctx_t ctx) { fmpz_mod_poly_init(B->V0, ctx); fmpz_mod_poly_init(B->R0, ctx); fmpz_mod_poly_set_ui(B->R0, 1, ctx); fmpz_mod_poly_init(B->V1, ctx); fmpz_mod_poly_set_ui(B->V1, 1, ctx); fmpz_mod_poly_init(B->R1, ctx); fmpz_mod_poly_init(B->rt, ctx); fmpz_mod_poly_init(B->qt, ctx); fmpz_mod_poly_init(B->points, ctx); B->npoints = 0; B->points->length = 0; } void fmpz_mod_berlekamp_massey_start_over( fmpz_mod_berlekamp_massey_t B, const fmpz_mod_ctx_t ctx) { B->npoints = 0; B->points->length = 0; fmpz_mod_poly_zero(B->V0, ctx); fmpz_mod_poly_set_ui(B->R0, 1, ctx); fmpz_mod_poly_set_ui(B->V1, 1, ctx); fmpz_mod_poly_zero(B->R1, ctx); } void fmpz_mod_berlekamp_massey_clear( fmpz_mod_berlekamp_massey_t B, const fmpz_mod_ctx_t ctx) { fmpz_mod_poly_clear(B->R0, ctx); fmpz_mod_poly_clear(B->R1, ctx); fmpz_mod_poly_clear(B->V0, ctx); fmpz_mod_poly_clear(B->V1, ctx); fmpz_mod_poly_clear(B->rt, ctx); fmpz_mod_poly_clear(B->qt, ctx); fmpz_mod_poly_clear(B->points, ctx); } void fmpz_mod_berlekamp_massey_print( const fmpz_mod_berlekamp_massey_t B, const fmpz_mod_ctx_t ctx) { slong i; fmpz_mod_poly_print_pretty(B->V1, "#", ctx); flint_printf(","); for (i = 0; i < B->points->length; i++) { flint_printf(" "); fmpz_print(B->points->coeffs + i); } } void fmpz_mod_berlekamp_massey_add_points( fmpz_mod_berlekamp_massey_t B, const fmpz * a, slong count, const fmpz_mod_ctx_t ctx) { slong i; slong old_length = B->points->length; fmpz_mod_poly_fit_length(B->points, old_length + count, ctx); for (i = 0; i < count; i++) { FLINT_ASSERT(fmpz_mod_is_canonical(a + i, ctx)); fmpz_set(B->points->coeffs + old_length + i, a + i); } B->points->length = old_length + count; } void fmpz_mod_berlekamp_massey_add_zeros( fmpz_mod_berlekamp_massey_t B, slong count, const fmpz_mod_ctx_t ctx) { slong i; slong old_length = B->points->length; fmpz_mod_poly_fit_length(B->points, old_length + count, ctx); for (i = 0; i < count; i++) { fmpz_zero(B->points->coeffs + old_length + i); } B->points->length = old_length + count; } void fmpz_mod_berlekamp_massey_add_point( fmpz_mod_berlekamp_massey_t B, const fmpz_t a, const fmpz_mod_ctx_t ctx) { slong old_length = B->points->length; fmpz_mod_poly_fit_length(B->points, old_length + 1, ctx); FLINT_ASSERT(fmpz_mod_is_canonical(a, ctx)); fmpz_set(B->points->coeffs + old_length, a); B->points->length = old_length + 1; } void fmpz_mod_berlekamp_massey_add_point_ui( fmpz_mod_berlekamp_massey_t B, ulong a, const fmpz_mod_ctx_t ctx) { slong old_length = B->points->length; fmpz_mod_poly_fit_length(B->points, old_length + 1, ctx); FLINT_ASSERT(fmpz_cmp_ui(fmpz_mod_ctx_modulus(ctx), a) > 0); fmpz_set_ui(B->points->coeffs + old_length, a); B->points->length = old_length + 1; } /* return 1 if reduction changed the master poly, 0 otherwise */ int fmpz_mod_berlekamp_massey_reduce( fmpz_mod_berlekamp_massey_t B, const fmpz_mod_ctx_t ctx) { slong i, l, k, queue_len, queue_lo, queue_hi; /* the points in B->points->coeffs[j] for queue_lo <= j < queue_hi need to be added to the internal polynomials. These are first reversed into rt. deg(rt) < queue_len. */ queue_lo = B->npoints; queue_hi = B->points->length; queue_len = queue_hi - queue_lo; FLINT_ASSERT(queue_len >= 0); fmpz_mod_poly_zero(B->rt, ctx); for (i = 0; i < queue_len; i++) { fmpz_mod_poly_set_coeff_fmpz(B->rt, queue_len - i - 1, B->points->coeffs + queue_lo + i, ctx); } B->npoints = queue_hi; /* Ri = Ri * x^queue_len + Vi*rt */ fmpz_mod_poly_mul(B->qt, B->V0, B->rt, ctx); fmpz_mod_poly_shift_left(B->R0, B->R0, queue_len, ctx); fmpz_mod_poly_add(B->R0, B->R0, B->qt, ctx); fmpz_mod_poly_mul(B->qt, B->V1, B->rt, ctx); fmpz_mod_poly_shift_left(B->R1, B->R1, queue_len, ctx); fmpz_mod_poly_add(B->R1, B->R1, B->qt, ctx); /* now start reducing R0, R1 */ if (2*fmpz_mod_poly_degree(B->R1, ctx) < B->npoints) { /* already have deg(R1) < B->npoints/2 */ return 0; } /* one iteration of euclid to get deg(R0) >= B->npoints/2 */ fmpz_mod_poly_divrem(B->qt, B->rt, B->R0, B->R1, ctx); fmpz_mod_poly_swap(B->R0, B->R1, ctx); fmpz_mod_poly_swap(B->R1, B->rt, ctx); fmpz_mod_poly_mul(B->rt, B->qt, B->V1, ctx); fmpz_mod_poly_sub(B->qt, B->V0, B->rt, ctx); fmpz_mod_poly_swap(B->V0, B->V1, ctx); fmpz_mod_poly_swap(B->V1, B->qt, ctx); l = fmpz_mod_poly_degree(B->R0, ctx); FLINT_ASSERT(B->npoints <= 2*l && l < B->npoints); k = B->npoints - l; FLINT_ASSERT(0 <= k && k <= l); /* (l - k)/2 is the expected number of required euclidean iterations. Either branch is OK anytime. TODO: find cutoff */ if (l - k < 10) { while (B->npoints <= 2*fmpz_mod_poly_degree(B->R1, ctx)) { fmpz_mod_poly_divrem(B->qt, B->rt, B->R0, B->R1, ctx); fmpz_mod_poly_swap(B->R0, B->R1, ctx); fmpz_mod_poly_swap(B->R1, B->rt, ctx); fmpz_mod_poly_mul(B->rt, B->qt, B->V1, ctx); fmpz_mod_poly_sub(B->qt, B->V0, B->rt, ctx); fmpz_mod_poly_swap(B->V0, B->V1, ctx); fmpz_mod_poly_swap(B->V1, B->qt, ctx); } } else { /* TODO: get hgcd working in this branch */ while (B->npoints <= 2*fmpz_mod_poly_degree(B->R1, ctx)) { fmpz_mod_poly_divrem(B->qt, B->rt, B->R0, B->R1, ctx); fmpz_mod_poly_swap(B->R0, B->R1, ctx); fmpz_mod_poly_swap(B->R1, B->rt, ctx); fmpz_mod_poly_mul(B->rt, B->qt, B->V1, ctx); fmpz_mod_poly_sub(B->qt, B->V0, B->rt, ctx); fmpz_mod_poly_swap(B->V0, B->V1, ctx); fmpz_mod_poly_swap(B->V1, B->qt, ctx); } } FLINT_ASSERT(fmpz_mod_poly_degree(B->V1, ctx) >= 0); FLINT_ASSERT(2*fmpz_mod_poly_degree(B->V1, ctx) <= B->npoints); FLINT_ASSERT(2*fmpz_mod_poly_degree(B->R0, ctx) >= B->npoints); FLINT_ASSERT(2*fmpz_mod_poly_degree(B->R1, ctx) < B->npoints); return 1; }