/* Copyright (C) 2011 Fredrik Johansson Copyright (C) 2012 Lina Kulakova This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "fmpz_vec.h" #include "fmpz_mod_poly.h" #include "fmpz_mat.h" #include "ulong_extras.h" void _fmpz_mod_poly_compose_mod_brent_kung(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, const fmpz * poly3, slong len3, const fmpz_t p) { fmpz_mat_t A, B, C; fmpz * t, * h, * tmp; slong i, j, n, m; n = len3 - 1; if (len3 == 1) return; if (len1 == 1) { fmpz_set(res, poly1); return; } if (len3 == 2) { _fmpz_mod_poly_evaluate_fmpz(res, poly1, len1, poly2, p); return; } m = n_sqrt(n) + 1; fmpz_mat_init(A, m, n); fmpz_mat_init(B, m, m); fmpz_mat_init(C, m, n); h = _fmpz_vec_init(2 * n - 1); t = _fmpz_vec_init(2 * n - 1); /* Set rows of B to the segments of poly1 */ for (i = 0; i < len1 / m; i++) _fmpz_vec_set(B->rows[i], poly1 + i * m, m); _fmpz_vec_set(B->rows[i], poly1 + i * m, len1 % m); /* Set rows of A to powers of poly2 */ fmpz_one(A->rows[0]); _fmpz_vec_set(A->rows[1], poly2, n); tmp = _fmpz_vec_init(2 * n - 1); for (i = 2; i < m; i++) { _fmpz_mod_poly_mulmod(tmp, A->rows[i - 1], n, poly2, n, poly3, len3, p); _fmpz_vec_set(A->rows[i], tmp, n); } _fmpz_vec_clear(tmp, 2 * n - 1); fmpz_mat_mul(C, B, A); for (i = 0; i < m; i++) for (j = 0; j < n; j++) fmpz_mod(C->rows[i] + j, C->rows[i] + j, p); /* Evaluate block composition using the Horner scheme */ _fmpz_vec_set(res, C->rows[m - 1], n); _fmpz_mod_poly_mulmod(h, A->rows[m - 1], n, poly2, n, poly3, len3, p); for (i = m - 2; i >= 0; i--) { _fmpz_mod_poly_mulmod(t, res, n, h, n, poly3, len3, p); _fmpz_mod_poly_add(res, t, n, C->rows[i], n, p); } _fmpz_vec_clear(h, 2 * n - 1); _fmpz_vec_clear(t, 2 * n - 1); fmpz_mat_clear(A); fmpz_mat_clear(B); fmpz_mat_clear(C); } void fmpz_mod_poly_compose_mod_brent_kung(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, const fmpz_mod_poly_t poly3, const fmpz_mod_ctx_t ctx) { slong len1 = poly1->length; slong len2 = poly2->length; slong len3 = poly3->length; slong len = len3 - 1; slong vec_len = FLINT_MAX(len3 - 1, len2); fmpz * ptr2; fmpz_t inv3; if (len3 == 0) { flint_printf("Exception (fmpz_mod_poly_compose_mod_brent_kung)." "Division by zero in\n"); flint_abort(); } if (len1 >= len3) { flint_printf("Exception (fmpz_mod_poly_compose_brent_kung). the degree of the" " first polynomial must be smaller than that of the modulus\n"); flint_abort(); } if (len1 == 0 || len3 == 1) { fmpz_mod_poly_zero(res, ctx); return; } if (len1 == 1) { fmpz_mod_poly_set(res, poly1, ctx); return; } if (res == poly3 || res == poly1) { fmpz_mod_poly_t tmp; fmpz_mod_poly_init(tmp, ctx); fmpz_mod_poly_compose_mod_brent_kung(tmp, poly1, poly2, poly3, ctx); fmpz_mod_poly_swap(tmp, res, ctx); fmpz_mod_poly_clear(tmp, ctx); return; } ptr2 = _fmpz_vec_init(vec_len); if (len2 <= len) { _fmpz_vec_set(ptr2, poly2->coeffs, len2); _fmpz_vec_zero(ptr2 + len2, vec_len - len2); } else { fmpz_init(inv3); fmpz_invmod(inv3, poly3->coeffs + len, fmpz_mod_ctx_modulus(ctx)); _fmpz_mod_poly_rem(ptr2, poly2->coeffs, len2, poly3->coeffs, len3, inv3, fmpz_mod_ctx_modulus(ctx)); fmpz_clear(inv3); } fmpz_mod_poly_fit_length(res, len, ctx); _fmpz_mod_poly_compose_mod_brent_kung(res->coeffs, poly1->coeffs, len1, ptr2, poly3->coeffs, len3, fmpz_mod_ctx_modulus(ctx)); _fmpz_mod_poly_set_length(res, len); _fmpz_mod_poly_normalise(res); _fmpz_vec_clear(ptr2, vec_len); }