/*
Copyright (C) 2011 Fredrik Johansson
Copyright (C) 2012 Lina Kulakova
Copyright (C) 2013 Martin Lee
Copyright (C) 2020 William Hart
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include "flint.h"
#include "fmpz_vec.h"
#include "fmpz_mod_poly.h"
#include "fmpz_mat.h"
#include "ulong_extras.h"
void
_fmpz_mod_poly_compose_mod_brent_kung_preinv(fmpz * res, const fmpz * poly1,
slong len1, const fmpz * poly2, const fmpz * poly3, slong len3,
const fmpz * poly3inv, slong len3inv, const fmpz_t p)
{
fmpz_mat_t A, B, C;
fmpz * t, * h;
slong i, j, n, m;
n = len3 - 1;
if (len3 == 1)
return;
if (len1 == 1)
{
fmpz_set(res, poly1);
return;
}
if (len3 == 2)
{
_fmpz_mod_poly_evaluate_fmpz(res, poly1, len1, poly2, p);
return;
}
m = n_sqrt(n) + 1;
fmpz_mat_init(A, m, n);
fmpz_mat_init(B, m, m);
fmpz_mat_init(C, m, n);
h = _fmpz_vec_init(2 * n - 1);
t = _fmpz_vec_init(2 * n - 1);
/* Set rows of B to the segments of poly1 */
for (i = 0; i < len1 / m; i++)
_fmpz_vec_set(B->rows[i], poly1 + i * m, m);
_fmpz_vec_set(B->rows[i], poly1 + i * m, len1 % m);
/* Set rows of A to powers of poly2 */
_fmpz_mod_poly_powers_mod_preinv_naive(A->rows, poly2, n,
m, poly3, len3, poly3inv, len3inv, p);
fmpz_mat_mul(C, B, A);
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
fmpz_mod(C->rows[i] + j, C->rows[i] + j, p);
/* Evaluate block composition using the Horner scheme */
_fmpz_vec_set(res, C->rows[m - 1], n);
_fmpz_mod_poly_mulmod_preinv(h, A->rows[m - 1], n, poly2, n, poly3, len3,
poly3inv, len3inv, p);
for (i = m - 2; i >= 0; i--)
{
_fmpz_mod_poly_mulmod_preinv(t, res, n, h, n, poly3, len3,
poly3inv, len3inv, p);
_fmpz_mod_poly_add(res, t, n, C->rows[i], n, p);
}
_fmpz_vec_clear(h, 2 * n - 1);
_fmpz_vec_clear(t, 2 * n - 1);
fmpz_mat_clear(A);
fmpz_mat_clear(B);
fmpz_mat_clear(C);
}
void
fmpz_mod_poly_compose_mod_brent_kung_preinv(fmpz_mod_poly_t res,
const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2,
const fmpz_mod_poly_t poly3, const fmpz_mod_poly_t poly3inv,
const fmpz_mod_ctx_t ctx)
{
slong len1 = poly1->length;
slong len2 = poly2->length;
slong len3 = poly3->length;
slong len = len3 - 1;
fmpz * ptr2;
fmpz_t inv3;
if (len3 == 0)
{
flint_printf("Exception (fmpz_mod_poly_compose_mod_brent_kung preinv)."
"Division by zero\n");
flint_abort();
}
if (len1 >= len3)
{
flint_printf("Exception (fmpz_mod_poly_compose_mod_brent_kung_preinv)."
"The degree of the first polynomial must be smaller than that of the "
" modulus\n");
flint_abort();
}
if (len1 == 0 || len3 == 1)
{
fmpz_mod_poly_zero(res, ctx);
return;
}
if (len1 == 1)
{
fmpz_mod_poly_set(res, poly1, ctx);
return;
}
if (res == poly3 || res == poly1 || res == poly3inv)
{
fmpz_mod_poly_t tmp;
fmpz_mod_poly_init(tmp, ctx);
fmpz_mod_poly_compose_mod_brent_kung_preinv(tmp, poly1, poly2,
poly3, poly3inv, ctx);
fmpz_mod_poly_swap(tmp, res, ctx);
fmpz_mod_poly_clear(tmp, ctx);
return;
}
ptr2 = _fmpz_vec_init(len);
if (len2 <= len)
{
_fmpz_vec_set(ptr2, poly2->coeffs, len2);
_fmpz_vec_zero(ptr2 + len2, len - len2);
}
else
{
fmpz_init(inv3);
fmpz_invmod(inv3, poly3->coeffs + len, fmpz_mod_ctx_modulus(ctx));
_fmpz_mod_poly_rem(ptr2, poly2->coeffs, len2,
poly3->coeffs, len3, inv3, fmpz_mod_ctx_modulus(ctx));
fmpz_clear(inv3);
}
fmpz_mod_poly_fit_length(res, len, ctx);
_fmpz_mod_poly_compose_mod_brent_kung_preinv(res->coeffs,
poly1->coeffs, len1, ptr2, poly3->coeffs, len3,
poly3inv->coeffs, poly3inv->length, fmpz_mod_ctx_modulus(ctx));
_fmpz_mod_poly_set_length(res, len);
_fmpz_mod_poly_normalise(res);
_fmpz_vec_clear(ptr2, len);
}