/* Copyright (C) 2011 Fredrik Johansson Copyright (C) 2012 Lina Kulakova Copyright (C) 2013 Martin Lee Copyright (C) 2020 William Hart This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "fmpz_vec.h" #include "fmpz_mod_poly.h" #include "fmpz_mat.h" #include "ulong_extras.h" void _fmpz_mod_poly_compose_mod_brent_kung_preinv(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, const fmpz * poly3, slong len3, const fmpz * poly3inv, slong len3inv, const fmpz_t p) { fmpz_mat_t A, B, C; fmpz * t, * h; slong i, j, n, m; n = len3 - 1; if (len3 == 1) return; if (len1 == 1) { fmpz_set(res, poly1); return; } if (len3 == 2) { _fmpz_mod_poly_evaluate_fmpz(res, poly1, len1, poly2, p); return; } m = n_sqrt(n) + 1; fmpz_mat_init(A, m, n); fmpz_mat_init(B, m, m); fmpz_mat_init(C, m, n); h = _fmpz_vec_init(2 * n - 1); t = _fmpz_vec_init(2 * n - 1); /* Set rows of B to the segments of poly1 */ for (i = 0; i < len1 / m; i++) _fmpz_vec_set(B->rows[i], poly1 + i * m, m); _fmpz_vec_set(B->rows[i], poly1 + i * m, len1 % m); /* Set rows of A to powers of poly2 */ _fmpz_mod_poly_powers_mod_preinv_naive(A->rows, poly2, n, m, poly3, len3, poly3inv, len3inv, p); fmpz_mat_mul(C, B, A); for (i = 0; i < m; i++) for (j = 0; j < n; j++) fmpz_mod(C->rows[i] + j, C->rows[i] + j, p); /* Evaluate block composition using the Horner scheme */ _fmpz_vec_set(res, C->rows[m - 1], n); _fmpz_mod_poly_mulmod_preinv(h, A->rows[m - 1], n, poly2, n, poly3, len3, poly3inv, len3inv, p); for (i = m - 2; i >= 0; i--) { _fmpz_mod_poly_mulmod_preinv(t, res, n, h, n, poly3, len3, poly3inv, len3inv, p); _fmpz_mod_poly_add(res, t, n, C->rows[i], n, p); } _fmpz_vec_clear(h, 2 * n - 1); _fmpz_vec_clear(t, 2 * n - 1); fmpz_mat_clear(A); fmpz_mat_clear(B); fmpz_mat_clear(C); } void fmpz_mod_poly_compose_mod_brent_kung_preinv(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, const fmpz_mod_poly_t poly3, const fmpz_mod_poly_t poly3inv, const fmpz_mod_ctx_t ctx) { slong len1 = poly1->length; slong len2 = poly2->length; slong len3 = poly3->length; slong len = len3 - 1; fmpz * ptr2; fmpz_t inv3; if (len3 == 0) { flint_printf("Exception (fmpz_mod_poly_compose_mod_brent_kung preinv)." "Division by zero\n"); flint_abort(); } if (len1 >= len3) { flint_printf("Exception (fmpz_mod_poly_compose_mod_brent_kung_preinv)." "The degree of the first polynomial must be smaller than that of the " " modulus\n"); flint_abort(); } if (len1 == 0 || len3 == 1) { fmpz_mod_poly_zero(res, ctx); return; } if (len1 == 1) { fmpz_mod_poly_set(res, poly1, ctx); return; } if (res == poly3 || res == poly1 || res == poly3inv) { fmpz_mod_poly_t tmp; fmpz_mod_poly_init(tmp, ctx); fmpz_mod_poly_compose_mod_brent_kung_preinv(tmp, poly1, poly2, poly3, poly3inv, ctx); fmpz_mod_poly_swap(tmp, res, ctx); fmpz_mod_poly_clear(tmp, ctx); return; } ptr2 = _fmpz_vec_init(len); if (len2 <= len) { _fmpz_vec_set(ptr2, poly2->coeffs, len2); _fmpz_vec_zero(ptr2 + len2, len - len2); } else { fmpz_init(inv3); fmpz_invmod(inv3, poly3->coeffs + len, fmpz_mod_ctx_modulus(ctx)); _fmpz_mod_poly_rem(ptr2, poly2->coeffs, len2, poly3->coeffs, len3, inv3, fmpz_mod_ctx_modulus(ctx)); fmpz_clear(inv3); } fmpz_mod_poly_fit_length(res, len, ctx); _fmpz_mod_poly_compose_mod_brent_kung_preinv(res->coeffs, poly1->coeffs, len1, ptr2, poly3->coeffs, len3, poly3inv->coeffs, poly3inv->length, fmpz_mod_ctx_modulus(ctx)); _fmpz_mod_poly_set_length(res, len); _fmpz_mod_poly_normalise(res); _fmpz_vec_clear(ptr2, len); }