/* Copyright (C) 2011 Fredrik Johansson Copyright (C) 2012 Lina Kulakova Copyright (C) 2014 Martin Lee Copyright (C) 2020 William Hart This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint.h" #include "fmpz_vec.h" #include "fmpz_mod_poly.h" #include "fmpz_mat.h" #include "ulong_extras.h" void _fmpz_mod_poly_compose_mod_brent_kung_vec_preinv(fmpz_mod_poly_struct * res, const fmpz_mod_poly_struct * polys, slong lenpolys, slong l, const fmpz * g, slong glen, const fmpz * poly, slong len, const fmpz * polyinv, slong leninv, const fmpz_t p) { fmpz_mat_t A, B, C; fmpz *t, *h; slong i, j, k, n, m, len2 = l, len1; n = len - 1; m = n_sqrt(n * len2) + 1; h = _fmpz_vec_init(n); t = _fmpz_vec_init(n); k = len / m + 1; fmpz_mat_init(A, m, n); fmpz_mat_init(B, k * len2, m); fmpz_mat_init(C, k * len2, n); /* Set rows of B to the segments of polys */ for (j = 0; j < len2; j++) { len1 = (polys + j)->length; for (i = 0; i < len1 / m; i++) _fmpz_vec_set(B->rows[i + j * k], (polys + j)->coeffs + i * m, m); _fmpz_vec_set(B->rows[i + j * k], (polys + j)->coeffs + i * m, len1 % m); } /* Set rows of A to powers of last element of polys */ _fmpz_mod_poly_powers_mod_preinv_naive(A->rows, g, glen, m, poly, len, polyinv, leninv, p); fmpz_mat_mul(C, B, A); for (i = 0; i < k * len2; i++) for (j = 0; j < n; j++) fmpz_mod(C->rows[i] + j, C->rows[i] + j, p); /* Evaluate block composition using the Horner scheme */ if (n == 1) { fmpz_mul(h + 0, A->rows[m - 1] + 0, A->rows[1] + 0); fmpz_mod(h + 0, h + 0, p); } else { _fmpz_mod_poly_mulmod_preinv(h, A->rows[m - 1], n, A->rows[1], n, poly, len, polyinv, leninv, p); } for (j = 0; j < len2; j++) { _fmpz_vec_set((res + j)->coeffs, C->rows[(j + 1) * k - 1], n); if (n == 1) { for (i = 2; i <= k; i++) { fmpz_mul(t + 0, res[j].coeffs + 0, h + 0); fmpz_add(res[j].coeffs + 0, t + 0, C->rows[(j + 1)*k - i] + 0); fmpz_mod(res[j].coeffs + 0, res[j].coeffs + 0, p); } } else { for (i = 2; i <= k; i++) { _fmpz_mod_poly_mulmod_preinv(t, res[j].coeffs, n, h, n, poly, len, polyinv, leninv, p); _fmpz_mod_poly_add(res[j].coeffs, t, n, C->rows[(j + 1)*k - i], n, p); } } } _fmpz_vec_clear(h, n); _fmpz_vec_clear(t, n); fmpz_mat_clear(A); fmpz_mat_clear(B); fmpz_mat_clear(C); } void fmpz_mod_poly_compose_mod_brent_kung_vec_preinv( fmpz_mod_poly_struct * res, const fmpz_mod_poly_struct * polys, slong len1, slong n, const fmpz_mod_poly_t g, const fmpz_mod_poly_t poly, const fmpz_mod_poly_t polyinv, const fmpz_mod_ctx_t ctx) { slong len2 = poly->length; slong len3, i; for (i = 0; i < len1; i++) { len3 = (polys + i)->length; if (len3 >= len2) { flint_printf ("Exception (fmpz_mod_poly_compose_mod_brent_kung_vec_preinv)." "The degree of the first polynomial must be smaller than that of the " " modulus\n"); flint_abort(); } } if (n > len1) { flint_printf ("Exception (fmpz_mod_poly_compose_mod_brent_kung_vec_preinv)." "n is larger than the length of polys\n"); flint_abort(); } if (n == 0) return; if (len2 == 1) { for (i = 0; i < n; i++) fmpz_mod_poly_zero(res + i, ctx); return; } if (len2 == 2) { for (i = 0; i < n; i++) fmpz_mod_poly_set(res + i, polys + i, ctx); return; } for (i = 0; i < n; i++) { fmpz_mod_poly_fit_length(res + i, len2 - 1, ctx); _fmpz_mod_poly_set_length(res + i, len2 - 1); } _fmpz_mod_poly_compose_mod_brent_kung_vec_preinv(res, polys, len1, n, g->coeffs, g->length, poly->coeffs, len2, polyinv->coeffs, polyinv->length, fmpz_mod_ctx_modulus(ctx)); for (i = 0; i < n; i++) _fmpz_mod_poly_normalise(res + i); }