/*
Copyright (C) 2011 Fredrik Johansson
Copyright (C) 2012 Lina Kulakova
Copyright (C) 2014 Martin Lee
Copyright (C) 2020 William Hart
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include "flint.h"
#include "fmpz_vec.h"
#include "fmpz_mod_poly.h"
#include "fmpz_mat.h"
#include "ulong_extras.h"
void
_fmpz_mod_poly_compose_mod_brent_kung_vec_preinv(fmpz_mod_poly_struct * res,
const fmpz_mod_poly_struct *
polys, slong lenpolys, slong l,
const fmpz * g, slong glen,
const fmpz * poly, slong len,
const fmpz * polyinv,
slong leninv, const fmpz_t p)
{
fmpz_mat_t A, B, C;
fmpz *t, *h;
slong i, j, k, n, m, len2 = l, len1;
n = len - 1;
m = n_sqrt(n * len2) + 1;
h = _fmpz_vec_init(n);
t = _fmpz_vec_init(n);
k = len / m + 1;
fmpz_mat_init(A, m, n);
fmpz_mat_init(B, k * len2, m);
fmpz_mat_init(C, k * len2, n);
/* Set rows of B to the segments of polys */
for (j = 0; j < len2; j++)
{
len1 = (polys + j)->length;
for (i = 0; i < len1 / m; i++)
_fmpz_vec_set(B->rows[i + j * k], (polys + j)->coeffs + i * m, m);
_fmpz_vec_set(B->rows[i + j * k], (polys + j)->coeffs + i * m,
len1 % m);
}
/* Set rows of A to powers of last element of polys */
_fmpz_mod_poly_powers_mod_preinv_naive(A->rows, g, glen,
m, poly, len, polyinv, leninv, p);
fmpz_mat_mul(C, B, A);
for (i = 0; i < k * len2; i++)
for (j = 0; j < n; j++)
fmpz_mod(C->rows[i] + j, C->rows[i] + j, p);
/* Evaluate block composition using the Horner scheme */
if (n == 1)
{
fmpz_mul(h + 0, A->rows[m - 1] + 0, A->rows[1] + 0);
fmpz_mod(h + 0, h + 0, p);
} else
{ _fmpz_mod_poly_mulmod_preinv(h, A->rows[m - 1], n, A->rows[1], n, poly,
len, polyinv, leninv, p);
}
for (j = 0; j < len2; j++)
{
_fmpz_vec_set((res + j)->coeffs, C->rows[(j + 1) * k - 1], n);
if (n == 1)
{
for (i = 2; i <= k; i++)
{
fmpz_mul(t + 0, res[j].coeffs + 0, h + 0);
fmpz_add(res[j].coeffs + 0, t + 0, C->rows[(j + 1)*k - i] + 0);
fmpz_mod(res[j].coeffs + 0, res[j].coeffs + 0, p);
}
} else
{
for (i = 2; i <= k; i++)
{
_fmpz_mod_poly_mulmod_preinv(t, res[j].coeffs, n, h, n, poly,
len, polyinv, leninv, p);
_fmpz_mod_poly_add(res[j].coeffs, t, n,
C->rows[(j + 1)*k - i], n, p);
}
}
}
_fmpz_vec_clear(h, n);
_fmpz_vec_clear(t, n);
fmpz_mat_clear(A);
fmpz_mat_clear(B);
fmpz_mat_clear(C);
}
void fmpz_mod_poly_compose_mod_brent_kung_vec_preinv(
fmpz_mod_poly_struct * res,
const fmpz_mod_poly_struct * polys,
slong len1,
slong n,
const fmpz_mod_poly_t g,
const fmpz_mod_poly_t poly,
const fmpz_mod_poly_t polyinv,
const fmpz_mod_ctx_t ctx)
{
slong len2 = poly->length;
slong len3, i;
for (i = 0; i < len1; i++)
{
len3 = (polys + i)->length;
if (len3 >= len2)
{
flint_printf
("Exception (fmpz_mod_poly_compose_mod_brent_kung_vec_preinv)."
"The degree of the first polynomial must be smaller than that of the "
" modulus\n");
flint_abort();
}
}
if (n > len1)
{
flint_printf
("Exception (fmpz_mod_poly_compose_mod_brent_kung_vec_preinv)."
"n is larger than the length of polys\n");
flint_abort();
}
if (n == 0)
return;
if (len2 == 1)
{
for (i = 0; i < n; i++)
fmpz_mod_poly_zero(res + i, ctx);
return;
}
if (len2 == 2)
{
for (i = 0; i < n; i++)
fmpz_mod_poly_set(res + i, polys + i, ctx);
return;
}
for (i = 0; i < n; i++)
{
fmpz_mod_poly_fit_length(res + i, len2 - 1, ctx);
_fmpz_mod_poly_set_length(res + i, len2 - 1);
}
_fmpz_mod_poly_compose_mod_brent_kung_vec_preinv(res, polys, len1, n,
g->coeffs, g->length,
poly->coeffs, len2,
polyinv->coeffs,
polyinv->length,
fmpz_mod_ctx_modulus(ctx));
for (i = 0; i < n; i++)
_fmpz_mod_poly_normalise(res + i);
}