/*
Copyright (C) 2020 William Hart
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include
#include "flint.h"
#include "fmpz_vec.h"
#include "fmpz_mod_poly.h"
#include "ulong_extras.h"
/*
compute f^0, f^1, ..., f^(n-1) mod g, where g has length glen and f is
reduced mod g and has length flen (possibly zero spaced)
assumes res is an array of n arrays each with space for at least glen - 1
coefficients and that flen > 0
{ginv, ginvlen} must be set to the power series inverse of the reverse of g
*/
void
_fmpz_mod_poly_powers_mod_preinv_naive(fmpz ** res, const fmpz * f,
slong flen, slong n, const fmpz * g, slong glen,
const fmpz * ginv, slong ginvlen, const fmpz_t p)
{
slong i;
if (n == 0)
return;
/* f^0 = 1 */
if (glen > 1)
fmpz_set_ui(res[0] + 0, 1);
if (glen > 2)
{
for (i = 1; i < glen - 1; i++)
fmpz_zero(res[0] + i);
}
if (n == 1)
return;
/* f^1 = f */
_fmpz_vec_set(res[1], f, flen);
for (i = flen; i < glen - 1; i++)
fmpz_zero(res[1] + i);
if (n == 2)
return;
/* f^i = f^(i - 1)*f */
if (glen == 2) /* special case, constant polys */
{
for (i = 2; i < n; i++)
{
fmpz_mul(res[i] + 0, res[i - 1] + 0, res[1] + 0);
fmpz_mod(res[i] + 0, res[i] + 0, p);
}
} else
{
for (i = 2; i < n; i++)
_fmpz_mod_poly_mulmod_preinv(res[i], res[i - 1], glen - 1, res[1],
glen - 1, g, glen, ginv, ginvlen, p);
}
}
void
fmpz_mod_poly_powers_mod_naive(fmpz_mod_poly_struct * res,
const fmpz_mod_poly_t f, slong n, const fmpz_mod_poly_t g,
const fmpz_mod_ctx_t ctx)
{
slong i;
fmpz_mod_poly_t ginv;
fmpz ** res_arr;
if (fmpz_mod_poly_length(g, ctx) == 0)
{
flint_printf("Exception (fmpz_mod_poly_powers_mod_naive). Divide by zero.\n");
flint_abort();
}
if (fmpz_mod_poly_length(f, ctx) == 0 || fmpz_mod_poly_length(g, ctx) == 1)
{
if (n > 0)
fmpz_mod_poly_one(res + 0, ctx);
for (i = 1; i < n; i++)
fmpz_mod_poly_zero(res + i, ctx);
return;
}
if (fmpz_mod_poly_length(f, ctx) >= fmpz_mod_poly_length(g, ctx))
{
fmpz_mod_poly_t q, r;
fmpz_mod_poly_init(q, ctx);
fmpz_mod_poly_init(r, ctx);
fmpz_mod_poly_divrem(q, r, f, g, ctx);
fmpz_mod_poly_powers_mod_naive(res, r, n, g, ctx);
fmpz_mod_poly_clear(q, ctx);
fmpz_mod_poly_clear(r, ctx);
return;
}
res_arr = (fmpz **) flint_malloc(n*sizeof(fmpz *));
fmpz_mod_poly_init(ginv, ctx);
for (i = 0; i < n; i++)
{
fmpz_mod_poly_fit_length(res + i, fmpz_mod_poly_length(g, ctx) - 1, ctx);
res_arr[i] = res[i].coeffs;
_fmpz_mod_poly_set_length(res + i, fmpz_mod_poly_length(g, ctx) - 1);
}
fmpz_mod_poly_reverse(ginv, g, fmpz_mod_poly_length(g, ctx), ctx);
fmpz_mod_poly_inv_series(ginv, ginv, fmpz_mod_poly_length(g, ctx), ctx);
_fmpz_mod_poly_powers_mod_preinv_naive(res_arr, f->coeffs, f->length, n,
g->coeffs, g->length, ginv->coeffs, ginv->length,
fmpz_mod_ctx_modulus(ctx));
for (i = 0; i < n; i++)
_fmpz_mod_poly_normalise(res + i);
fmpz_mod_poly_clear(ginv, ctx);
flint_free(res_arr);
}