/* Copyright (C) 2020 William Hart This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include #include "flint.h" #include "fmpz_vec.h" #include "fmpz_mod_poly.h" #include "ulong_extras.h" /* compute f^0, f^1, ..., f^(n-1) mod g, where g has length glen and f is reduced mod g and has length flen (possibly zero spaced) assumes res is an array of n arrays each with space for at least glen - 1 coefficients and that flen > 0 {ginv, ginvlen} must be set to the power series inverse of the reverse of g */ void _fmpz_mod_poly_powers_mod_preinv_naive(fmpz ** res, const fmpz * f, slong flen, slong n, const fmpz * g, slong glen, const fmpz * ginv, slong ginvlen, const fmpz_t p) { slong i; if (n == 0) return; /* f^0 = 1 */ if (glen > 1) fmpz_set_ui(res[0] + 0, 1); if (glen > 2) { for (i = 1; i < glen - 1; i++) fmpz_zero(res[0] + i); } if (n == 1) return; /* f^1 = f */ _fmpz_vec_set(res[1], f, flen); for (i = flen; i < glen - 1; i++) fmpz_zero(res[1] + i); if (n == 2) return; /* f^i = f^(i - 1)*f */ if (glen == 2) /* special case, constant polys */ { for (i = 2; i < n; i++) { fmpz_mul(res[i] + 0, res[i - 1] + 0, res[1] + 0); fmpz_mod(res[i] + 0, res[i] + 0, p); } } else { for (i = 2; i < n; i++) _fmpz_mod_poly_mulmod_preinv(res[i], res[i - 1], glen - 1, res[1], glen - 1, g, glen, ginv, ginvlen, p); } } void fmpz_mod_poly_powers_mod_naive(fmpz_mod_poly_struct * res, const fmpz_mod_poly_t f, slong n, const fmpz_mod_poly_t g, const fmpz_mod_ctx_t ctx) { slong i; fmpz_mod_poly_t ginv; fmpz ** res_arr; if (fmpz_mod_poly_length(g, ctx) == 0) { flint_printf("Exception (fmpz_mod_poly_powers_mod_naive). Divide by zero.\n"); flint_abort(); } if (fmpz_mod_poly_length(f, ctx) == 0 || fmpz_mod_poly_length(g, ctx) == 1) { if (n > 0) fmpz_mod_poly_one(res + 0, ctx); for (i = 1; i < n; i++) fmpz_mod_poly_zero(res + i, ctx); return; } if (fmpz_mod_poly_length(f, ctx) >= fmpz_mod_poly_length(g, ctx)) { fmpz_mod_poly_t q, r; fmpz_mod_poly_init(q, ctx); fmpz_mod_poly_init(r, ctx); fmpz_mod_poly_divrem(q, r, f, g, ctx); fmpz_mod_poly_powers_mod_naive(res, r, n, g, ctx); fmpz_mod_poly_clear(q, ctx); fmpz_mod_poly_clear(r, ctx); return; } res_arr = (fmpz **) flint_malloc(n*sizeof(fmpz *)); fmpz_mod_poly_init(ginv, ctx); for (i = 0; i < n; i++) { fmpz_mod_poly_fit_length(res + i, fmpz_mod_poly_length(g, ctx) - 1, ctx); res_arr[i] = res[i].coeffs; _fmpz_mod_poly_set_length(res + i, fmpz_mod_poly_length(g, ctx) - 1); } fmpz_mod_poly_reverse(ginv, g, fmpz_mod_poly_length(g, ctx), ctx); fmpz_mod_poly_inv_series(ginv, ginv, fmpz_mod_poly_length(g, ctx), ctx); _fmpz_mod_poly_powers_mod_preinv_naive(res_arr, f->coeffs, f->length, n, g->coeffs, g->length, ginv->coeffs, ginv->length, fmpz_mod_ctx_modulus(ctx)); for (i = 0; i < n; i++) _fmpz_mod_poly_normalise(res + i); fmpz_mod_poly_clear(ginv, ctx); flint_free(res_arr); }