/*
Copyright (C) 2007 David Howden
Copyright (C) 2007, 2008, 2009, 2010 William Hart
Copyright (C) 2008 Richard Howell-Peak
Copyright (C) 2011 Fredrik Johansson
Copyright (C) 2012 Lina Kulakova
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include "fmpz_mod_poly.h"
#include "fmpz_mat.h"
#include "ulong_extras.h"
#include "profiler.h"
#include "perm.h"
static void
fmpz_mod_poly_to_fmpz_mat_col(fmpz_mat_t mat, slong col, fmpz_mod_poly_t poly)
{
slong i;
for (i = 0; i < poly->length; i++)
fmpz_set(fmpz_mat_entry(mat, i, col), poly->coeffs + i);
for (; i < mat->r; i++)
fmpz_zero(fmpz_mat_entry(mat, i, col));
}
static void
fmpz_mat_col_to_fmpz_mod_poly_shifted(fmpz_mod_poly_t poly, fmpz_mat_t mat,
slong col, slong *shift, const fmpz_mod_ctx_t ctx)
{
slong i, j, rows = mat->r;
fmpz_mod_poly_fit_length(poly, rows, ctx);
for (i = 0, j = 0; j < rows; j++)
{
if (shift[j])
fmpz_zero(poly->coeffs + j);
else
{
fmpz_set(poly->coeffs + j, fmpz_mat_entry(mat, i, col));
i++;
}
}
_fmpz_mod_poly_set_length(poly, rows);
_fmpz_mod_poly_normalise(poly);
}
static void
__fmpz_mod_poly_factor_berlekamp(fmpz_mod_poly_factor_t factors,
flint_rand_t state, const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx)
{
const slong n = fmpz_mod_poly_degree(f, ctx);
const fmpz * p = fmpz_mod_ctx_modulus(ctx);
fmpz_mod_poly_factor_t fac1, fac2;
fmpz_mod_poly_t x, x_p;
fmpz_mod_poly_t x_pi, x_pi2;
fmpz_mod_poly_t Q, r;
fmpz_mat_t matrix;
fmpz_t coeff, q, mul, pow;
slong i, nullity, col, row;
slong *shift, *perm;
fmpz_mod_poly_t *basis;
if (f->length <= 2)
{
fmpz_mod_poly_factor_insert(factors, f, 1, ctx);
return;
}
fmpz_init(coeff);
fmpz_init(mul);
/* q = p - 1 */
fmpz_init_set(q, p);
fmpz_sub_ui(q, q, 1);
fmpz_mod(q, q, p);
/* pow = (p-1)/2 */
fmpz_init(pow);
if (fmpz_cmp_ui(p, 3) > 0)
{
fmpz_set(pow, q);
fmpz_divexact_ui(pow, pow, 2);
}
/* Step 1, compute x^p mod f in F_p[X]/ */
fmpz_mod_poly_init(x, ctx);
fmpz_mod_poly_init(x_p, ctx);
fmpz_mod_poly_set_coeff_ui(x, 1, 1, ctx);
fmpz_mod_poly_powmod_fmpz_binexp(x_p, x, p, f, ctx);
fmpz_mod_poly_clear(x, ctx);
/* Step 2, compute the matrix for the Berlekamp Map */
fmpz_mat_init(matrix, n, n);
fmpz_mod_poly_init(x_pi, ctx);
fmpz_mod_poly_init(x_pi2, ctx);
fmpz_mod_poly_set_coeff_ui(x_pi, 0, 1, ctx);
for (i = 0; i < n; i++)
{
/* Q - I */
fmpz_mod_poly_set(x_pi2, x_pi, ctx);
fmpz_mod_poly_get_coeff_fmpz(coeff, x_pi2, i, ctx);
if (!fmpz_is_zero(coeff))
{
fmpz_sub_ui(coeff, coeff, 1);
fmpz_mod(coeff, coeff, p);
fmpz_mod_poly_set_coeff_fmpz(x_pi2, i, coeff, ctx);
}
else
{
fmpz_mod_poly_set_coeff_fmpz(x_pi2, i, q, ctx);
}
fmpz_mod_poly_to_fmpz_mat_col(matrix, i, x_pi2);
fmpz_mod_poly_mulmod(x_pi, x_pi, x_p, f, ctx);
}
fmpz_mod_poly_clear(x_p, ctx);
fmpz_mod_poly_clear(x_pi, ctx);
fmpz_mod_poly_clear(x_pi2, ctx);
/* Row reduce Q - I */
perm = _perm_init(n);
nullity = n - fmpz_mat_rref_mod(perm, matrix, p);
_perm_clear(perm);
/* Find a basis for the nullspace */
basis =
(fmpz_mod_poly_t *) flint_malloc(nullity * sizeof(fmpz_mod_poly_t));
shift = (slong *) flint_calloc(n, sizeof(slong));
col = 1; /* first column is always zero */
row = 0;
shift[0] = 1;
for (i = 1; i < nullity; i++)
{
fmpz_mod_poly_init(basis[i], ctx);
while (!fmpz_is_zero(fmpz_mat_entry(matrix, row, col)))
{
row++;
col++;
}
fmpz_mat_col_to_fmpz_mod_poly_shifted(basis[i], matrix, col, shift, ctx);
fmpz_mod_poly_set_coeff_fmpz(basis[i], col, q, ctx);
shift[col] = 1;
col++;
}
flint_free(shift);
fmpz_mat_clear(matrix);
/* we are done */
if (nullity == 1)
{
fmpz_mod_poly_factor_insert(factors, f, 1, ctx);
}
else
{
/* Generate random linear combinations */
fmpz_mod_poly_t factor, b, power, g;
fmpz_mod_poly_init(factor, ctx);
fmpz_mod_poly_init(b, ctx);
fmpz_mod_poly_init(power, ctx);
fmpz_mod_poly_init(g, ctx);
while (1)
{
do
{
fmpz_mod_poly_zero(factor, ctx);
for (i = 1; i < nullity; i++)
{
fmpz_randm(mul, state, p);
fmpz_mod_poly_scalar_mul_fmpz(b, basis[i], mul, ctx);
fmpz_mod_poly_add(factor, factor, b, ctx);
}
fmpz_randm(coeff, state, p);
fmpz_mod_poly_set_coeff_fmpz(factor, 0, coeff, ctx);
if (!fmpz_mod_poly_is_zero(factor, ctx))
fmpz_mod_poly_make_monic(factor, factor, ctx);
}
while (fmpz_mod_poly_is_zero(factor, ctx) ||
(factor->length < 2 && fmpz_is_one(factor->coeffs)));
fmpz_mod_poly_gcd(g, f, factor, ctx);
if (fmpz_mod_poly_length(g, ctx) != 1)
break;
if (fmpz_cmp_ui(p, 3) > 0)
fmpz_mod_poly_powmod_fmpz_binexp(power, factor, pow, f, ctx);
else
fmpz_mod_poly_set(power, factor, ctx);
fmpz_add(power->coeffs, power->coeffs, q);
fmpz_mod(power->coeffs, power->coeffs, p);
_fmpz_mod_poly_normalise(power);
fmpz_mod_poly_gcd(g, power, f, ctx);
if (fmpz_mod_poly_length(g, ctx) != 1)
break;
}
fmpz_mod_poly_clear(power, ctx);
fmpz_mod_poly_clear(factor, ctx);
fmpz_mod_poly_clear(b, ctx);
if (!fmpz_mod_poly_is_zero(g, ctx))
fmpz_mod_poly_make_monic(g, g, ctx);
fmpz_mod_poly_factor_init(fac1, ctx);
fmpz_mod_poly_factor_init(fac2, ctx);
__fmpz_mod_poly_factor_berlekamp(fac1, state, g, ctx);
fmpz_mod_poly_init(Q, ctx);
fmpz_mod_poly_init(r, ctx);
fmpz_mod_poly_divrem(Q, r, f, g, ctx);
fmpz_mod_poly_clear(r, ctx);
if (!fmpz_mod_poly_is_zero(Q, ctx))
fmpz_mod_poly_make_monic(Q, Q, ctx);
__fmpz_mod_poly_factor_berlekamp(fac2, state, Q, ctx);
fmpz_mod_poly_factor_concat(factors, fac1, ctx);
fmpz_mod_poly_factor_concat(factors, fac2, ctx);
fmpz_mod_poly_factor_clear(fac1, ctx);
fmpz_mod_poly_factor_clear(fac2, ctx);
fmpz_mod_poly_clear(Q, ctx);
fmpz_mod_poly_clear(g, ctx);
}
for (i = 1; i < nullity; i++)
fmpz_mod_poly_clear(basis[i], ctx);
flint_free(basis);
fmpz_clear(coeff);
fmpz_clear(q);
fmpz_clear(mul);
fmpz_clear(pow);
}
void
fmpz_mod_poly_factor_berlekamp(fmpz_mod_poly_factor_t factors,
const fmpz_mod_poly_t f, const fmpz_mod_ctx_t ctx)
{
slong i;
flint_rand_t r;
fmpz_mod_poly_t v;
fmpz_mod_poly_factor_t sq_free;
fmpz_mod_poly_init(v, ctx);
fmpz_mod_poly_make_monic(v, f, ctx);
/* compute squarefree factorisation */
fmpz_mod_poly_factor_init(sq_free, ctx);
fmpz_mod_poly_factor_squarefree(sq_free, v, ctx);
/* run Berlekamp algorithm for all squarefree factors */
flint_randinit(r);
for (i = 0; i < sq_free->num; i++)
{
__fmpz_mod_poly_factor_berlekamp(factors, r, sq_free->poly + i, ctx);
}
flint_randclear(r);
/* compute multiplicities of factors in f */
for (i = 0; i < factors->num; i++)
factors->exp[i] = fmpz_mod_poly_remove(v, factors->poly + i, ctx);
fmpz_mod_poly_clear(v, ctx);
fmpz_mod_poly_factor_clear(sq_free, ctx);
}