/* Copyright (C) 2012 Lina Kulakova Copyright (C) 2013 Martin Lee Copyright (C) 2020 William Hart Copyright (C) 2020 Daniel Schultz This file is part of FLINT. FLINT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #undef ulong #define ulong ulongxx/* interferes with system includes */ #include #undef ulong #include #define ulong mp_limb_t #include "fmpz_mod_poly.h" /* the degrees are written as exponents of the corresponding factors */ void fmpz_mod_poly_factor_distinct_deg_with_frob( fmpz_mod_poly_factor_t res, const fmpz_mod_poly_t poly, const fmpz_mod_poly_t polyinv, const fmpz_mod_poly_t frob, /* x^p mod poly */ const fmpz_mod_ctx_t ctx) { const fmpz * p = fmpz_mod_ctx_modulus(ctx); fmpz_mod_poly_t f, g, v, vinv, tmp; fmpz_mod_poly_t *h, *H, *I; slong i, j, l, m, n, d; fmpz_mat_t HH, HHH; double beta; FLINT_ASSERT(fmpz_mod_poly_is_monic(poly, ctx)); n = fmpz_mod_poly_degree(poly, ctx); if (n == 1) { fmpz_mod_poly_factor_fit_length(res, 1, ctx); fmpz_mod_poly_set(res->poly + 0, poly, ctx); res->exp[0] = 1; res->num = 1; return; } beta = 0.5 * (1. - (log(2) / log(n))); l = ceil(pow(n, beta)); m = ceil(0.5 * n / l); /* initialization */ fmpz_mod_poly_init(v, ctx); fmpz_mod_poly_init(vinv, ctx); fmpz_mod_poly_init(f, ctx); fmpz_mod_poly_init(g, ctx); fmpz_mod_poly_init(tmp, ctx); h = FLINT_ARRAY_ALLOC(2*m + l + 1, fmpz_mod_poly_t); H = h + (l + 1); I = H + m; for (i = 0; i < 2*m + l + 1; i++) fmpz_mod_poly_init(h[i], ctx); fmpz_mod_poly_set(v, poly, ctx); fmpz_mod_poly_set(vinv, polyinv, ctx); /* compute baby steps: h[i]=x^{p^i}mod v */ fmpz_mod_poly_set_coeff_ui(h[0], 1, 1, ctx); fmpz_mod_poly_set(h[1], frob, ctx); #if FLINT_WANT_ASSERT fmpz_mod_poly_powmod_x_fmpz_preinv(tmp, p, v, vinv, ctx); FLINT_ASSERT(fmpz_mod_poly_equal(tmp, h[1], ctx)); #endif if (fmpz_sizeinbase(p, 2) > ((n_sqrt(v->length - 1) + 1) * 3) / 4) { for (i = 1; i < FLINT_BIT_COUNT(l); i++) fmpz_mod_poly_compose_mod_brent_kung_vec_preinv(*(h + 1 + (1 << (i - 1))), *(h + 1), (1 << (i - 1)), (1 << (i - 1)), *(h + (1 << (i - 1))), v, vinv, ctx); fmpz_mod_poly_compose_mod_brent_kung_vec_preinv(*(h + 1 + (1 << (i - 1))), *(h + 1), (1 << (i - 1)), l - (1 << (i - 1)), *(h + (1 << (i - 1))), v, vinv, ctx); } else { for (i = 2; i < l + 1; i++) { fmpz_mod_poly_init(h[i], ctx); fmpz_mod_poly_powmod_fmpz_binexp_preinv(h[i], h[i - 1], p, v, vinv, ctx); } } /* compute coarse distinct-degree factorisation */ res->num = 0; fmpz_mod_poly_set(H[0], h[l], ctx); fmpz_mat_init(HH, n_sqrt(v->length - 1) + 1, v->length - 1); fmpz_mod_poly_precompute_matrix(HH, H[0], v, vinv, ctx); d = 1; for (j = 0; j < m; j++) { /* compute giant steps: H[i]=x^{p^(li)}mod v */ if (j > 0) { if (I[j - 1]->length > 1) { _fmpz_mod_poly_reduce_matrix_mod_poly(HHH, HH, v, ctx); fmpz_mat_clear(HH); fmpz_mat_init_set(HH, HHH); fmpz_mat_clear(HHH); fmpz_mod_poly_rem(tmp, H[j - 1], v, ctx); fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv(H[j], tmp, HH, v, vinv, ctx); } else fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv(H[j], H[j - 1], HH, v, vinv, ctx); } /* compute interval polynomials */ fmpz_mod_poly_set_coeff_ui(I[j], 0, 1, ctx); for (i = l - 1; (i >= 0) && (2 * d <= v->length - 1); i--, d++) { fmpz_mod_poly_rem(tmp, h[i], v, ctx); fmpz_mod_poly_sub(tmp, H[j], tmp, ctx); fmpz_mod_poly_mulmod_preinv(I[j], tmp, I[j], v, vinv, ctx); } /* compute F_j=f^{[j*l+1]} * ... * f^{[j*l+l]} */ /* F_j is stored on the place of I_j */ fmpz_mod_poly_gcd(I[j], v, I[j], ctx); if (I[j]->length > 1) { fmpz_mod_poly_divrem(v, tmp, v, I[j], ctx); fmpz_mod_poly_reverse(vinv, v, v->length, ctx); fmpz_mod_poly_inv_series_newton(vinv, vinv, v->length, ctx); } if (v->length - 1 < 2 * d) { break; } } if (v->length > 1) { fmpz_mod_poly_factor_fit_length(res, res->num + 1, ctx); res->exp[res->num] = v->length - 1; fmpz_mod_poly_swap(res->poly + res->num, v, ctx); res->num++; } /* compute fine distinct-degree factorisation */ for (j = 0; j < m; j++) { if (I[j]->length - 1 > (j + 1)*l || j == 0) { fmpz_mod_poly_set(g, I[j], ctx); for (i = l - 1; i >= 0 && (g->length > 1); i--) { /* compute f^{[l*(j+1)-i]} */ fmpz_mod_poly_sub(tmp, H[j], h[i], ctx); fmpz_mod_poly_gcd(f, g, tmp, ctx); if (f->length > 1) { /* insert f^{[l*(j+1)-i]} into res */ fmpz_mod_poly_divrem(g, tmp, g, f, ctx); FLINT_ASSERT(fmpz_mod_poly_is_monic(f, ctx)); fmpz_mod_poly_factor_fit_length(res, res->num + 1, ctx); res->exp[res->num] = l * (j + 1) - i; fmpz_mod_poly_swap(res->poly + res->num, f, ctx); res->num++; } } } else if (I[j]->length > 1) { FLINT_ASSERT(fmpz_mod_poly_is_monic(I[j], ctx)); fmpz_mod_poly_factor_fit_length(res, res->num + 1, ctx); res->exp[res->num] = I[j]->length - 1; fmpz_mod_poly_swap(res->poly + res->num, I[j], ctx); res->num++; } } /* cleanup */ fmpz_mod_poly_clear(f, ctx); fmpz_mod_poly_clear(g, ctx); fmpz_mod_poly_clear(v, ctx); fmpz_mod_poly_clear(vinv, ctx); fmpz_mod_poly_clear(tmp, ctx); fmpz_mat_clear(HH); for (i = 0; i < l + 1; i++) fmpz_mod_poly_clear(h[i], ctx); for (i = 0; i < m; i++) { fmpz_mod_poly_clear(H[i], ctx); fmpz_mod_poly_clear(I[i], ctx); } flint_free(h); } void fmpz_mod_poly_factor_distinct_deg(fmpz_mod_poly_factor_t res, const fmpz_mod_poly_t poly, slong * const *degs, const fmpz_mod_ctx_t ctx) { slong i; fmpz_mod_poly_t v, vinv, xp; fmpz_mod_poly_init(v, ctx); fmpz_mod_poly_init(vinv, ctx); fmpz_mod_poly_init(xp, ctx); fmpz_mod_poly_make_monic(v, poly, ctx); fmpz_mod_poly_reverse(vinv, v, v->length, ctx); fmpz_mod_poly_inv_series_newton(vinv, vinv, v->length, ctx); fmpz_mod_poly_powmod_x_fmpz_preinv(xp, fmpz_mod_ctx_modulus(ctx), v, vinv, ctx); fmpz_mod_poly_factor_distinct_deg_with_frob(res, v, vinv, xp, ctx); /* satisfy the requirements of the interface */ for (i = 0; i < res->num; i++) { (*degs)[i] = res->exp[i]; res->exp[i] = 1; } fmpz_mod_poly_clear(v, ctx); fmpz_mod_poly_clear(vinv, ctx); fmpz_mod_poly_clear(xp, ctx); }